
 CHEMICAL ENGINEERING TRANSACTIONS  
 

VOL. 54, 2016 

A publication of 

 
The Italian Association 

of Chemical Engineering 
Online at www.aidic.it/cet 

Guest Editors: Selena Sironi, Laura Capelli 
Copyright © 2016, AIDIC Servizi S.r.l., 
ISBN 978-88-95608-45-7; ISSN 2283-9216 

Application of an Electronic Nose Coupled to a Gas Analyser 
for Measuring Ammonia 

Fernando Campoa, Andy Blanco-Rodríguezb, Rodolfo Valientec, Bradies Lambertd, 
Liliam Becheránd, Henrique de Melo Lisboab, Alejandro Duránd, Alejandro Garcia-
Ramirez*a 
aCenter for Technological Earth and Sea Sciences (CTTMar), University of Vale do Itajaí (UNIVALI), 88302-202, Itajaí, 
Santa Catarina, Brasil.  
bLaboratory of Air Quality Control (LCQAr), Department of Sanitary and Environmental Engineering (ENS), Federal 
University of Santa Catarina (UFSC), 88040-900, Florianópolis-SC, Brazil. 
c Microelectronics Research Center (CIME), José Antonio Echeverría Higher Polytechnic Institute (CUJAE), 19390, Havana, 
Cuba. 
d Institute of Science and Technology of Materials (IMRE), University of Havana (UH), 10400, Havana, Cuba.  
garcia.ramirez@gmail.com  

This work presents the application of an electronic nose (e-nose) based on MOS sensors, for quantitative 
analysis of ammonia, and its calibration regarding a commercial gas analyser. Features were extracted from 
the sensors responses in the time domain, the phase space and the frequency domain. Each feature was 
evaluated considering its repeatability discrimination capability, information content and redundancy, by using 
a signal to standard deviation ratio (S/σ) and Principal Components Analysis (PCA). Based on this 
assessment, two parameters were selected from the responses of two sensors: the slope of the desorption 
transient and the first coefficient of a Daubechies 1 Wavelet decomposition of 11 levels. Afterwards, the four 
features selected were used as predictor variables in a Partial Least Square (PLS) regression, for correlating 
the e-nose response with the ammonia concentration measured with a gas analyser. This regression model 
allows the e-nose to predict the ammonia concentration values with a R2 = 0.99 and RMESCV of 1.40 ± 0.04 
ppm. 

1. Introduction 
It is known that ammonia emissions affect the environment in several ways, such as over-fertilization and 
acidification of soils near ammonia sources, contamination of surface waters, fine particulate matter formation, 
and nitrous oxide formation (Hristov et al., 2011). Inside poultry barns, these emissions also have a negative 
impact in both humans and animals’ health (Wathes et al., 2002). These and other related factors have made 
the measurement of ammonia emissions an issue of interest.  
In this context, the so-called electronic noses (e-noses) have been taking an important role in recent years for 
monitoring these emissions (Lorwongtragool et al., 2010; Sohn et al., 2008; Abdullah et al., 2012). E-noses 
perform odour measurements based on the perception of the human nose, overcoming disadvantages derived 
from human psyche. E-noses can also operate continuously, performing real-time and in-situ monitoring for 
long time periods. In addition, their results can be correlated to other analytical instruments like olfactometers, 
gas chromatographs coupled to mass spectrometers (GC-MS) and gas analysers, providing information 
related to the concentration of a certain gas.  
For correlating the responses of electronic noses with analytical instruments, linear and non-linear regression 
techniques have been reported (Lei et al., 2015; Michishita et al., 2010). These techniques use a group of 
variables, easier (or cheaper) to measure, to predict results that otherwise would be more difficult to obtain. 
Nevertheless, due to the highly redundant information provided by the sensors used in e-noses, some issues 
like data dimensionality and co-linearity must be treated in order to increase reliability and simplicity to the 
prediction model. 



The above mentioned problems can be solved, in some extent, by using an appropriate pre-processing stage 
in e-noses, where features are extracted and the most discriminative and informative ones are selected, 
depending on the application. According to its nature, features could be classified as: extracted directly from 
the sensors responses in the time domain; extracted from the responses in phase space; extracted from the 
spectral analysis; and extracted from parametrical models (Yan et al., 2015). Feature selection, on the other 
hand, may be achieved by means of filters, wrappers or embedded solutions. Among these, filters provide a 
more general approach with suitable results in most applications, besides, they are computationally attractive 
(Scott et al., 2007). With this kind of algorithms, information is filtered according to certain criteria. 
This work presents the correlation of an e-nose output with a gas analyser for measuring ammonia 
concentrations. Correlation makes it possible to predict the response of the gas analyser with the e-nose, by 
means of a PLS regression model. In order to increase accuracy and simplicity of the desired model, features 
were extracted and selected, reducing dimensionality and redundancy. The features were extracted directly 
from the time responses, from the phase space and from the spectral analysis based on Fourier and Wavelet 
transforms. The extracted parameters were selected according to their repeatability, discrimination 
capabilities, information content and redundancy. For this selection, the signal to noise ratio (S/σ) of each 
feature was computed, and a principal components analysis was performed. The selected variables were 
used as predictors for the PLS regression. 

2. Materials and methods 
This section presents the experimental procedure and describes the feature extraction techniques applied to 
the responses of the e-nose sensors, as well as the choice criteria for the preprocessing stage. 

2.1 Experimental procedure 
Eight ammonia concentration values were prepared with a dilution system, and were measured with Dräger X-
am® 7000 gas analyser and the e-nose, following the sequence described in the next paragraph. The dilution 
system was mainly composed by a cylinder containing ammonia at a concentration of 100 ppm. Ammonia was 
diluted with dry air, and the different levels of dilution were achieved by regulating the flow of both gases. All 
the experiments were performed under laboratory conditions of humidity and temperature.  
For each experimental set, the gas with the desired concentration was first introduced inside a Tedlar bag 
using the dilution system. Then, the ammonia concentration was measured by the gas analyser and, right 
afterwards, the bag was placed in the e-nose gas inlet for analysis. This procedure was repeated for all 8 
concentration values. Also, a reference bag containing pure air was prepared and measured with the gas 
analyser showing 0 ppm of ammonia. 
For each bag, two sets of measurements were performed using the e-nose. Within each set, six replicates 
were acquired from the responses of each gas sensor. A blank response was acquired from the reference bag 
before each set of measurements. Considering that the corresponding electric signals were sampled at a 
frequency of 5 Hz during 350 s, the amount of data at the end of the measuring process was:  
8 (concentration points) X 2 (sets of measurements) X 6 (replicates) X 6 (sensors) X 350 s X 5 Hz = 96 (gas 
samples) X 6 (sensors) X 1750 (digital samples) 

2.2 Data preprocessing 
Each sensor was processed by a moving average filter, and each corresponding baseline was treated using 
the differential method (Arshak et al., 2004). An exploratory analysis was performed for discarding none 
responsive sensors and outliers. For feature extraction, various techniques were applied in both the time and 
frequency domains, and in the phase space. The analysis performed in the frequency domain was based on 
Fourier and Wavelet transforms. Subsequently, the best features were selected according to their 
repeatability, discrimination and redundancy. The selection criterions were based on Principal Components 
Analysis (PCA) and the signal to standard deviation ratio reported by Eklov et al. (1997). 

2.2.1 Signal to Standard Deviation Ratio (S/σ) 
The signal to standard deviation ratio is a method reported by Eklov et al. (1997) for selecting features 
extracted from the responses of a gas sensor array according to their repeatability and discrimination. The 
signal (S), in this case, represents the variation of a feature’s mean value at all concentration points, and the 
standard deviation (σ) represents the variation around the mean value at each concentration point. Thus, the 
signal describes the spread between the feature’s mean values for the different concentrations 
(discrimination), while the standard deviation describes the feature’s variation within replicates (repeatability). 
A high value of S indicates that the feature discriminates well different concentrations; a low σ, on the other 
hand, denotes good repeatability for the replicates. So, the higher the ratio, the more discriminative and 
repeatable the feature is. 



3. Results and discussion 
After an exploratory data analysis, it was observed that only three of the sensors showed some level of 
response for different concentration values. These sensors were the TGS2602, TGS826 and TGS2610. 
Therefore, the responses of the other sensors were discarded. It was also observed during the experiments, 
that the responses corresponding to the first replicate of each set of measurements showed lower response 
values than the others. For that reason, these replicates were considered as outliers and removed from data. 
The information resulting from this analysis corresponded to the responses of 3 sensors to 80 gas samples. 
Since baselines had already been removed, each response vector was composed by 1250 digital samples. 
After this process of irrelevant and noisy data removal, the dimensionality was reduced from 96 X 6 X 1750 to 
80 X 3 X 1250. 

3.1 Feature extraction 
Table 1 summarizes the parameters extracted, the dimensionality and signal to noise ratio (S/σ) of the 
corresponding data. The data dimensionality was reduced to 80 X 3 X 28, being 28 the number of features 
extracted. However, it was still necessary to reduce redundant and noisy information by using feature 
selection.  

Table 1:  Extracted features. 

Feature  Dimension S/σ Description 
Features extracted directly from the time response 

VMax 80 X 3 3,418 Maximum response value (stationary feature). 
TSub 80 X 3 0,366 Rise time. 
IntSub 80 X 3 2,953 Integral of the adsorption transient. 
IntDes 80 X 3 3,450 Integral of the desorption transient. 
PenSub 80 X 3 2,867 Maximum slope during the adsorption transient. 
NSub 80 X 3 1,536 Interception in the y-axis of the line with slope PenSub. 
PenDes 80 X 3 3,932 Minimum slope during the desorption transient. 
NDes 80 X 3 3,749 Interception in the y-axis of the line with slope PenDes. 
Win(1) 80 X 3 2,550 

Integral of the product of 4 window functions as in (GUTIERREZ-
OSUNA and NAGLE, 1999), applied to the whole pulse. 

Win(2) 80 X 3 3,297 
Win(3) 80 X 3 3,393 
Win(4) 80 X 3 3,034 

Features extracted from the phase space 
Int 80 X 3 2,048 Integral of the whole response in the phase state. 
DA 80 X 3 1,238 Distance from the baseline to the maximum slope during adsorption

(ZHANG et al., 2008). 
DB 80 X 3 0,773 Distance from the maximum slope during adsorption to the stationary

state of the response (ZHANG et al., 2008). 
DC 80 X 3 3,551 Distance from the stationary state of the response to the minimum

slope during desorption (ZHANG et al., 2008). 
DD 80 X 3 3,194 Distance from the minimum slope during desorption to the baseline

(ZHANG et al., 2008). 
Features extracted from spectral analysis 

CoefFr 80 X 3 X 7 3,076 The seven lowest Fourier coefficients. They correspond to the DC
component and the first three lowest frequencies. This was the set of
components with the highest signal to noise ratio compared to the rest
of the Fourier coefficients. 

NormFr 80 X 3 3,281 Euclidian norm of the vector formed by the selected Fourier
coefficients. 

CoefWvt 80 X 3 3,005 Coefficient of the first level of decomposition of an 11 levels
Daubechies 1 Wavelet decomposition. This was the level with the
highest signal to noise ratio compared to the other levels. 

AppWvt 80 X 3 3,296 Approximation coefficient of the Wavelet decomposition mentioned
above. 

NormWvt 80 X 3 3,188 Euclidian norm of the vector formed by the approximation and the
coefficient of the first decomposition. 

 



3.2 Feature selection 
It was considered as a necessary condition for the selection of a feature, that its variation along all the 
concentration values were three times bigger than the variation around a single concentration. Thus, features 
with a S/σ greater than 3 were preselected, and the rest were discarded. As a result, for the subsequent 
analysis, 20 features were considered as having suitable repeatability and discrimination, and they appear 
highlighted in Table 1.  
In the next phase of selection, PCAs were performed and a selection criterion based on redundancy and noise 
was used. In order to facilitate the analysis, features were divided in three groups: extracted from time and 
phase response, extracted from Fourier analysis and extracted from Wavelet analysis.  
It was observed, in all three cases, that the first principal component (PC1) represented the variation from the 
lower to the higher concentrations, while PC2 contained information for discrimination between the lower 
concentrations, together with noise in higher concentrations. For that reason, a criterion for selection was that 
the feature provided most of the information in PC1. Features with too much information in PC2 were 
considered noisy and were not selected. Also, the features very close to each other were considered 
redundant and were not selected. 
At the end of this procedure, features were selected from each group. In general, in all three analysis, the 
response of sensor TGS2610 showed to be source of noise and was therefore discarded. In the case of the 
time and phase space features, the selection was: PenDes and DC. The Fourier coefficients selected were 
three, which corresponded to the zero frequency component (CofFr4), and the first positive (CofFr5) and 
negative (CofFr3) frequency components. From the Wavelet analysis the feature selected was the coefficient 
of the first level of decomposition (CofWvt). Summarizing, the features selected after this process were: 
PenDes TGS826, PenDes TGS2602, DC TGS826, DC TGS2602, CofFr3 TGS826, CofFr4 TGS826, CofFr5 
TGS826, CofFr3 TGS2602, CofFr4 TGS2602, CofFr5 TGS2602, CofWvt TGS826 and CofWvt TGS2602. 
A final PCA was performed with these features and its corresponding biplot graph is shown in Figure 1.  

 

Figure 1. Biplot graph depicting the features selected from each group. 

Following the same analysis as before, the features DC, extracted from the phase space of both sensors were 
discarded for having too much information in PC2. Fourier low frequency coefficients (CofFr3 and CofFr5) 
were redundant in both sensors' responses, and, specifically, those corresponding to TGS2602 contained 
noise. On the other hand, the CofFr4 coefficient, corresponding to the zero frequency component, provided 
almost the same information as the Wavelet coefficient. Since Wavelet components contain both frequency 
and time information, the feature CofFr4 was also discarded and the final selection was: the minimum slope 
during desorption transient of the sensors TGS2602 and TGS826, and the Wavelet coefficient of the sensors 
TGS2602 and TGS826.  
Figure 2 shows the PCA plot using these final features. It can be observed suitable discrimination between 
groups and good repeatability, although higher dispersion was observed at high concentrations. This result 
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proves that dynamic features also provide information of concentration and therefore they could be used in 
quantitative analyses like the one performed in this work.  

 

Figure 2. PCA graph using the minimum slope during desorption transient of the sensors TGS2602 and 
TGS826, and the Wavelet coefficient of the sensors TGS2602 and TGS826. 

3.3 E-nose calibration  
A PLS regression was performed using the finally selected features as predictors, see Figure 3. After ten 
regressions, the model showed a root mean square error by cross-validation (RMSECV) between 1.36 and 
1.43 ppm. According to the model, the real ammonia concentration is related to the e-nose responses by a 
line of slope 0.99 ± 0.02, a y-intercept in 0.15±0.47 ppm and a R2 = 0.9914. Since both intervals of slope and 
y-intercept contain the values 1 and 0 respectively, it could be affirmed that the relation can be represented by 
a line with unitary slope and no intercept. This means that the selected variables are able to predict the 
concentration of ammonia.

 

Figure 3. PLS regression with the selected features 
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4. Conclusions 
In the present work, an e-nose was calibrated for measuring ammonia concentrations under laboratory 
conditions. It was observed that from an array of six sensors, only two of them provided useful information. In 
the same way, only two features were able to discriminate between the concentration samples, reducing noise 
and redundancy of the original responses. Thus, data dimensionality was reduced to 80 X 4 from the original 
amount of 96 X 6 X 1750. It was also observed that dynamic features are suitable for quantitative approaches 
providing accurate results by a PLS regression. Through the obtained regression model, the e-nose was able 
to predict the concentration of ammonia previously measured with a gas analyser, showing potentiality for 
monitoring ammonia emissions. 
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