# Solar photocatalytic H<sub>2</sub> production over CeO<sub>2</sub>-based catalysts

**Stefano Andrea Balsamo<sup>1</sup>**, Roberto Fiorenza<sup>1</sup>, Marcello Condorelli<sup>1</sup>, Luisa D'Urso<sup>1</sup>, Giuseppe Compagnini<sup>1</sup>, and Salvatore Sciré<sup>1</sup>. (1) Dipartimento di Scienze Chimiche, Università degli studi di Catania, Catania, Italia e-mail: <u>stefano.balsamo@phd.unict.it</u>

### Introduction and Methods

Photocatalytic approach is a green and alternative process to produce hydrogen via water splitting<sup>1</sup>. In photocatalysis, CeO<sub>2</sub> is a less active semiconductor than TiO<sub>2</sub> (the most used photocatalyst), but its lower band gap allows it to adsorb a major portion of visible light<sup>1</sup>. One of the most employed strategy for this purpose, is the synthesis of nanocomposites with other oxides. WO<sub>3</sub> is widely used as holes donor in water splitting processes and its combination with CeO<sub>2</sub> could be a suitable strategy to increase the H<sub>2</sub> yield<sup>2</sup>. Recently, the photo-reforming process of an organic compound is also considered as a good approach<sup>3</sup>, and that is why in the reaction mixture an alcohol is often added as sacrificial agent<sup>3</sup>. In this context, the use of a bio-alcohol could be an additional advantage. In this work, were synthesized several composites using two different preparation methods: co-precipitation and templated synthesis. In particular, were employed two different templating agents, the cetrimonium bromide (CTAB) and the hexamethylenetetramine (HMTA). For each preparation, a 5% wt and 10% wt of tungsten oxide were added, for a total of six different samples. Finally, the most performant sample were treated with a pulsing laser, in order to modify its surface properties.

#### Results

In the results, it is possible to note how a low percentage of  $WO_3$  enhances the activity in coprecipitated samples (CeO<sub>2</sub>-W5) respect to bare CeO<sub>2</sub>. However, this behaviour is opposite in HMTA templated synthesis, where the best activity among all untreated composites is given by the 10% modified sample (CeO<sub>2</sub>-W10 [HMTA]). Instead, CTAB preparation shows the lowest activity. Looking the treated samples, it is interesting as the laser treatment enhances the activity more in the composite than in the bare sample.

#### Conclusion

CeO<sub>2</sub>-WO<sub>3</sub> composites were prepared as unconventional photocatalysts for hydrogen evolution.

The 10% wt HMTA templated synthesis gave the best results with 0.175 mmol/g h of  $H_2$ . Furthermore, the laser treatment induces defective centres on the material surface that increase the  $H_2$  yield more than two times (0.4 mmol/g h), how verified also by Raman spectroscopy and TEM images.

## References

- 1. Fiorenza, R. *et al.* Au/TiO2-CeO2 catalysts for photocatalytic water splitting and VOCs oxidation reactions. *Catalysts* **6**, 121 (2016).
- 2. Su, J., Guo, L., Bao, N. & Grimes, C. A. Nanostructured WO 3 /BiVO 4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting. *Nano Lett.* **11**, 1928–1933 (2011).
- 3. Bowker, M. *et al.* The photocatalytic window: Photo-reforming of organics and water splitting for sustainable hydrogen production. *Catal. Letters* **145**, 214–219 (2015).

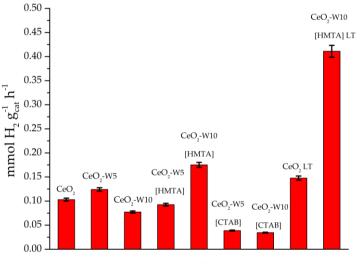



Figure 1 H<sub>2</sub> production for each sample