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This paper provides a perspective on modelling and uncertainties in systematic model-based approaches in PSE
for reliable and first-time right solution of product-process design related problems. Different challenges related
to development and uses of systematic model-based approaches for product-process design are discussed and
various sources of uncertainties in model-based approaches are highlighted. The significance of managing
complexity including the uncertainties in model-based framework is highlighted and a hybrid systematic
framework is proposed. The expected tasks from such a systematic framework thus becomes two-folds: (i)
manage knowledge, data, models, associated methods, algorithms, tools integrated with work-flows/data-flows
for specific product-process design problems, and (ii) manage uncertainties (of data, parameters, models, and
their predictions) and their impact on decision-making related to specific product-process design problems. A
model-based systematic framework for managing complexity and uncertainties in process design is given and
discussed with respect to main ideas that need consideration. The application of the framework is highlighted
with a product-process design from water industry while application of the framework on other product-process
design problems can be found elsewhere. This perspectives paper is dedicated to Professor Sauro Pierucci for his
contributions to CAPE and PSE.

1. INTRODUCTION

Process systems engineering (PSE) is concerned with understanding, analyzing and development of systematic
procedures for the design, control, and operation of chemical process systems for manufacturing a wide range of
products (Takamutsu, 1983). In parallel to a changing world, the domain of topics covered within chemical
engineering are also changing and expanding, influencing thereby, the scope and significance of process systems
engineering. As a result the scope of PSE has increased from the traditional areas of chemical engineering
involving the oil, chemical and petrochemical industries to solving problems in emerging areas including life
sciences (nutrients, health, medical sciences, biotechnology, biofuels), pharmaceutical industry, food industry,
energy and enterprise-wide optimisation among others. (Grossman and Westerberg 2000; Grossman, 2005; Gani
and Grossman, 2007; Gani, 2009). This expanding domain of applications for PSE naturally brings a new set of
problems and challenges to work on, but at the same time ample opportunities to further advance the science of
process systems engineering, that is, a systems approach to analyze, understand and solve problems effectively
and innovatively.

2. MODELLING FOR RODUCT-PROCESS DESIGN, COMPLEXITY AND UNCERTAINTIES

The problems related to product-process design differ in terms of the type of chemical(s) being produced. The
products from traditional areas of chemical engineering such as petrochemical and chemical industries are
usually commodity chemicals, small and/or structurally simple molecules, produced in large amounts and
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typically driven my marginal profit. The main challenge here is optimization of the chemical process system to
increase processing efficiency and reduce the production cost. On the other hand, the products in emerging areas
especially in life sciences and pharmaceutical industries are usually large and/or complex molecules, produced in
small amounts. Here, process optimization in terms of operational reliability, reproducibility (reduced product
quality variability) and time of operation is usually the important driving factor for a candidate product-process.
This means that although the principles of systems approach, that is, steps in the systematic solution of product-
process design problems could be the same, the models and data, and the methods and tools needed in the
various solution steps may be different.

That being said there are also common challenges in product and process development across the board of
traditional and emerging areas of PSE as outlined in Table 1. Accordingly there is a constant drive for making
new products through novel processing technologies for making novel products either to replace old/obsolete
products from the market or meet new needs in the market. Next type of problem is about making new products
from already existing processing capacity and installed technology in an attempt to diversify into new products
for emerging needs in the market without the need for new capital investment. The third type of problem is about
improving competitiveness (as marginal profit optimisation) through further optimising the efficiency and cost
of production of the same product with new processing technologies perhaps through process intensification.
This type of problems may also arise due to new regulatory changes, in which, for example, minimizing the CO,
footprint of the production maybe imposed as well as other environmental regulation related to air and water
pollution. The last type of problems relate to operation optimisation to maintain competitiveness in the market
perhaps through continuous operation optimisation maybe by using advanced process control, offline versus
online optimisation, model predictive controls.

Table 1 Different types of product-process design problems in traditional and emerging areas of PSE domain of

applications
Problem type Product | Process Corporate purpose
Problem type#1 New New Make new products to replace old products or

meet new market needs

Problem type#2 New Old IAdapt to market needs to meet new demands
or replace old products

Problem type#3 Old New Improve competitiveness through optimizing
efficiency & cost /meet regulatory demands

Problem type#4 Old Old Maintain competitiveness through optimization
of efficiency and cost

As pointed out by Gani (2009) modelling is a central element in model-based systematic solution of all product-
process design problems classified in Table 1. These problems are solved by performing computer simulations of
product-process candidates and evaluating their performances using systematic methods (algorithms) against
specific objective functions (typically multi-criteria considered). This approach requires data and models to
describe specific product-process combinations as illustrated in Figure 1. For example, models are needed to
predict the behaviour of the product-process (quality of a product from a given a processing route, the efficient
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of processing route and so on), to evaluate the performance of the product-process, to monitor and/or control the
product-process, and many more (see Figure 1). These models may be of different type (different types of
equations are used to represent the system); scales (may involve sub-systems requiring different size (molecular
versus reactor scale) and time scales); complexity (number of equations, degree of non-linearity, dimension, etc.)
and simulation mode (steady state, dynamic, batch, fed-batch, ezc.).
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Figure 1 Evaluation of product-process candidates through models in model-based approach for product-
process design

It is important to mention that this model-based approach is not meant to rid of experimentation in product-
process development (which is de-facto the case in practice). Experimentation both at laboratory and pilot/demo
scales shall remain important. However the model-based approach do mean to improve the product-process
development by (i) reducing the number of experimentation needed (currently this is done based on experiences
and expertise of the scientist and largely following a trial and error approach which is often costly with respect to
time and resources), (ii) speeding up the development time for product-process as computer simulations for
feasible product-process candidates can relatively be analyzed faster at different scales (for example, laboratory,
pilot and demonstration scales) and (iii) screening and evaluating different process monitoring and control
strategies in a fast and efficient way especially suitable for implementation of PAT in pharmaceutical
manufacturing. While in Figure 1 the problem boundary is set to consider only product-processing technology
interactions, modelling and PSE also provides the ability to develop and implement multi-criteria issues such as
energy management, supply chain and sustainability within an enlarged system boundary for product-process
design problems.

From the perspectives of developing and using model-based approaches for solution of product-process design
problems, any systematic framework would need to handle the following issues:

e Product-process interactions occurring at multi-scale dimensions: important data related to the
chemicals may come from different sources, at different scales of time and size; for example, the
properties that define the product characteristics could be based on the microstructure of the molecule
or material, while the process behaviour that needs to be monitored and controlled during operation
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may be defined by the macroscopic (end-use) properties of the chemical system; the supply chain and
sustainability issues need to be addressed at the mega-scale.

e Management of increasingly multidisciplinary information and knowledge: the conversion, for
example, of the biomass feedstock through biocatalysis requires knowledge of organic synthesis,
enzymes, reaction catalysis, bioreactor design and operation — information about these topics come
from different disciplines namely biochemistry, protein-enzyme engineering, reaction and reactor
engineering, process design and operation; sustainability analysis requires data, methods and tools from
different disciplines from environmental sciences, chemical engineering sciences; the need for
computer-aided methods for integration of methods and tools needed to solve the problems effectively;
management of data, models and solution algorithm through for example databases requires knowledge
from information technology.

e Management of uncertainties in data and models: As data, models and their parameters play a central
role in computer simulations, predicting would-be product-process performances and related metrics
from different candidates becomes very important to formally address and deal with uncertainties in
various data, models and parameters used in the simulations (Sin et al., 2009a). For example,
parameters estimated for reaction rate constant, affinity constant and inhibition constant of a certain
catalyst is almost often estimated from experimental data with measurement errors implying a certain
error on the estimated parameters. The question then becomes what is the impact of these uncertainties
on the model predictions, in other words, how reliable/representative and therefore meaningful are the
computer simulations? Such uncertainties may be defined as technological risks, i.e., failure of a
selected product-process design to meet anticipated (or simulated) target efficiency/cost metrics. In
addition to technological risks (this is expected to be low for traditional chemical engineering areas, but
relatively higher for emerging chemical engineering areas, such as, life sciences where one is concerned
with development of product-process design from scratch). Another source of uncertainties may also
come from predicted market demand for the product in question which is a variable.

Referring to Table 1 there is a need to continuously keep improving product-process design (and development)
by considering, for example, the demand for improved chemical-based products made from more sustainable
raw material resources and employing more efficient processes to make them. Therefore, methods and tools
suitable for current and future product-process design need to manage a collection of sub-problems that require
effective, efficient and consistent handling of data and knowledge and uncertainties from different sources and at
different time and size scales. This is inevitably a complex problem. Hence a systems approach that can
efficiently “manage the complexity” is needed.

This contribution provides a perspective on the opportunities for the development and use of hybrid model-based
frameworks for systematic solution of chemical product-process design problems with particular emphasize on
dealing with uncertainties in data and models explicitly.

3. MANAGING COMPLEXITY THROUGH SYSTEMS APROACH

A formal definition of the product-process design problem (Gani, 2004) is given by the following generic
mathematical formulation:

Foy = 8" v+ fix)} M
Subject to

D;=h/(x z p) 2)
D> =hy(x, z p) 3)
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Where, the objective function, also called performance index, given in (Eq. 1) needs to be minimized or
maximized and typically include multiple terms such as those related to product-process candidates but also
processing efficiency, costs, sustainability and so on. The process model (Eq. 2) satisfies the conservation of
mass and/or energy as a function of the product-process variables (x), design variables (z) and model parameters
(p). (the above generic formulation may also include a dynamic process model as inequality constraint when
dealing with monitoring and control problems). The product performance model (Eq. 3) predicts the behaviour
of the product during its application; the product-process structure equations (Eq. 6) generate the feasible
product-process candidates (flowsheet structures) as a function of decision (integer) variables (y) and x; and
finally, the product-process constraints (Eqgs. 4-5) define operational and/or chemical functional constraints ().
Considering that the models maybe multi-scalar, non-linear and the variables involved may be integer as well as
real, the generic problem defined above could represent a complex multi-dimensional problem of the MINLP
type. Several variations of the above problem have also been formulated and solved in process optimization
(Grossman, 2005), heat-mass exchange networks (Bagajewicz, 2000), and in product-process design
(Karunanithi et al., 2005; Conte et al., 2011).

For successful solution of the above-formulated generic product-process design problem, one requires (i)
product-process model objects for the chemical system in question, (ii) necessary data for design variables z and
model parameters p for a wide range of models and systems, (iii) good initial estimate for x and y for different
for the specific problem in question. One way to manage this complexity is to provide a hybrid model-based
framework for handling a diverse set of design work-flows corresponding to a wide range of problems, through
an integrated computer-aided system. Such systems need to have a knowledge base of data, a library of models, a
collection of algorithms (the work-flow and data-flow guiding the engineer/scientist through the solution steps),
and, other associated methods-tools (such as a tool to analyze data; a tool to create the missing model; a tool to
screen feasible alternatives). Given that a successful solution is obtained from solution of above generic product-
process design problem, an important question here is what are the role of uncertainties in data and models and
how these can be formally addresses and dealt with?

4. MANAGEMENT OF COMPLEXITY PLUS UNCERTAINITIES

Within management of complexity, several model-based frameworks have been developed to address and
systematically solve a number of product-process design related specific problems including:
e  Model-based chemical formulation design (Conte et al., 2011)
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e  Model-based process monitoring and analysis system (Singh et al., 2009)

e  Model based integrated process and controller design (Hamid et al., 2010)

e  Model-based sustainable process design (Carvalho et al., 2009)

e  Model-based process intensification (Lutze et al., 2010)

e Model-based chemical product-process synthesis (d’ Antoroaches and Gani, 2005)

In this paper we are highlighting only one of them, which address the uncertainty issue in model-based product-
process design problems.

4.1. A framework

Uncertainty appears across a wide range of fields from physics to statistics, economics, environmental science
(especially climate change), geophysical engineering (earthquake forecasting) and engineering, among others.
What concerns engineering, uncertainty maybe defined as “the lack of certainty, a state of having limited
knowledge about a system or process thereby unable to exactly define the future outcome as more than one
outcome is possible”. Some possible outcomes of uncertainty may have undesired effects, e.g., significant loss
due to suboptimal engineering decisions (oversized reactor design, wrong choice of controllers, efc.) or large
fluctuations in the product specs. Uncertainty and risk are two separate terms, but related in the following way:
Those possible outcomes having undesired effects invokes the notion of risk. Hence dealing with uncertainty
sets the stage for risk-based decision making in engineering works with potential cost-savings (Sin ef al., 2011).

Chemical engineers have faced and dealt with uncertainties from the very beginning of the profession. For
example, uncertainties of certain aspects of engineering processes, lack of physical properties of chemicals;
unpredictability of reaction rates particularly in the case of biotechnological processes; unpredictability of
varying feedstock composition; variations in output demand, etc., have forced design engineers to implement
safety factors. Of course another effective method for dealing with uncertainties at production/operation scale is
the use of plant wide control methods, which rejects disturbances and keep the plant operating at a defined
trajectory. Both types of approaches have merits on their own when it comes to dealing with uncertainties,
however they both have drawbacks too. For example, the choice of a safety factor for a equipment design
(reactor, separator, heat-exchanger, pump, etc.) is arbitrary and varies widely among different industries (there is
no quantitative guidance). Moreover, the magnitude of disturbances a plant-wide control scheme can reject will
be determined by the choice of safety factor (hence design) as well as the selected components of the physical
control system (e.g., the pump capacity will have certain constraints with lower and upper bounds on the

capacity).

Alternatively, one can use a proactive approach where sources of uncertainties are questioned and revealed
systematically in product-process design problems (Sin et al., 2009a). As regards sources of uncertainties, these
may be grouped into three categories (i) input uncertainties — that reflects lack of knowledge about the model
inputs (physical-chemical parameters) and data; (ii) structural uncertainty — that relates to the mathematical form
of the model (note that models are approximations to systems rather than an exact copy); and (iii) stochastic
uncertainty— this may be a component of the model itself (e.g., a random failure events of pumps, etc.). The
output is a reliability/robustness analysis of the model-based solution of the product-process candidate.

In this approach, one aims at a formal uncertainty analysis. In general, uncertainty analysis is concerned with
propagation of the various sources of uncertainty (e.g., data, parameters, kinetics, etc.) to the model output, e.g.,
performance index). The uncertainty analysis leads to probability distributions of model predictions, which are
then used to infer the mean, variance and percentiles of model predictions. The sensitivity analysis, on the other
hand, aims at identifying and quantifying the individual contributions of the uncertain inputs to the output
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uncertainty. Uncertainty and sensitivity analysis are usually (and preferably) performed in tandem with each
other.

Product-process design problem type X

Objective k'

v
/ '+ Model of product-process design \
Framing candidate
» ldentify sources of uncertainties

Monte-Carlo Procedure
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* Monte-CarloSimulations
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Figure 2 A systematic framework for managing uncertainties in model-based solution of product-process design
problems

To answer the question posted earlier, what the impacts of uncertainties in data, models, parameters on the
obtained solution of product-process design problems are, a systematic framework is proposed as highlighted in
Figure 2. The first stage of the framework is setting the objective of the uncertainty analysis, e.g. what is the
robustness of a given product-process design candidate. The second stage of the framework is called framing for
uncertainty and sensitivity analysis. This stage deals with identification, understanding, calculating and
analyzing uncertainties in the model predictions. This stage includes the following sub-steps: (i) model objects
for product-process candidate, (ii) identification and characterisation of various sources of uncertainties, (iii)
Monte-Carlo procedure to propagate different sources of uncertainties to the model predictions (Helton and
Davis, 2003; Sin ef al., 2009b), which includes (a) sampling (e.g., using Latin-Hypercube Sampling), (b) Monte
Carlo simulations and (¢) evaluation of output (model predictions) uncertainties, (iv) sensitivity analysis (e.g.,
analysis of variance, standardized regression coefficients methods, etc) to find out which sources of uncertainties
are important and by which fraction they contribute to uncertainties in the model predictions. Stage 3 is called
sanity check, which scrutinizes the uncertainty/sensitivity results using product-process engineering expertise.
This stage is merely to reflect on the framing scenario in which sensitivity and uncertainty analysis is carried out.
If the results are deemed not meaningful from similar or previous experiences, e.g., the estimated uncertainties in
the model predictions are unrealistically high, and then one has to go and debug or improve the framing scenario.
If the results are deemed meaningful, then one can further go ahead and use them in decision making. In the last
stage, the robustness of the model-based solution is evaluated by judging from a number of criteria including risk
plots (e.g., probability of failure to meet target product constraints, such as 90% chance that the product purity
constraints will be met).
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The outcome of the framework of uncertainty analysis is the answer to the question of uncertainties the model-
based solutions to product-process design problems. The answer could be in the following forms: answer 1) the
model-based solutions to product-process design is reliable/robust hence go to implementation and
experimentation step, answer 2) the model-based solution is very sensitive to a set of assumed data or model
parameters. Hence further investigation is needed to zoom in on the data, parameters that needs accurate
information before concluding on the reliability of the solution, answer 3) the given uncertainties in data and
models are too large and hence one needs some experimental measurements (focused) to improve the accuracy
of the data and models and re-use the systematic framework for model-based solutions.

4.2 Application of the framework

The framework has been applied to a number of problems related to process design and development from
fermentation to water and biofuels areas (Sin et al., 2009b;). The application related to product-process design
problem from water industry is highlighted here, while the details of the can be obtained elsewhere (Sin et al.,
2009a; Sin et al., 2011).

The purpose of the application of the uncertainty analysis framework was to answer the following question:
given a process design candidate with its layout, operational configuration and feed profile, what are the
uncertainties of the key process performance criteria? As the candidate process design flowsheet, BSM1 plant
given in Figure 3 was considered in the analysis. Further details about the layout can be found in Sin et al.,
2009a.

PI Pl Pl
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Waste sludge
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Internal recycle, Q4 =30,

Sludge recycle, 0, =10,

Figure 3 BSMI process flowsheet considered as process design candidate in the uncertainty analysis framework
(Sin et al., 2009a)

In stage of the framework, the following sources of uncertainties were identified: the biokinetic model
parameters, the performance of the aeration equipment and the hydraulic performance of the bioreactor while it
was assumed that solid-liquid separation poses no additional uncertainty on the process performance. In total 26
parameters were identified as uncertain in the design and further they were assigned an uncertainty classes based
on expert review (see Sin et al., 2009a). Having identified and provided uncertainty ranges for each parameters,
Monte Carlo simulations were then performed with the process model which quantified the uncertainties on the
process performance criteria as mean with standard deviation as follows: effluent nitrogen concentration (12.9 +
2.3mg N/L of nitrate and 1.8 = 0.9mg N/l of ammonium), sludge production (2593 + 384 kgSS/d) and electricity
consumption (3660 + 210 kWh/d). This candidate process design delivers a process performance with large
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uncertainties especially with respect to effluent quality of the treated water —which is the product of this process.
Further analysing the cumulative distribution function of the effluent quality of treated water, one finds that the
probability of failure to meet the legal discharge limits is 0.75, which is unacceptably high. The sensitivity
analysis found out that only 6 parameters out of 26 are mainly responsible for the uncertainties in the process
performance. The most significant of them is found inert fraction of solids in the feed alone causing 50% of the
uncertainty in the effluent nitrogen concentrations.

At stage 3 the results of uncertainty and sensitivity analysis were passed through a sanity check in which h
process engineering expertise and past experiences were consulted, which confirm the validity of uncertainty and
sensitivity analysis results. Hence the framework suggested improving the candidate process design by
considering an additional unit operation such as grit removal aiming at decreasing the source of uncertainty in
the feed. Another alternative was suggested to increase the safety factor (Sin et al., 2011).

5. CONCLUSIONS

In this paper, a hybrid systematic model-based approach for solving product-process design problems has been
discussed and an example of a systematic framework for dealing with uncertainties has been provided. The
proposed framework falls under management of complexity where uncertainties inherently present in data and
models are just another layer of complexity in the general or specific product-process design problems. An
example of application of the framework has been highlighted for a process design problem from the water
industry, which helped assess and improve the robustness of the candidate process design.
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