PARALLEL COMPUTING DIRECTIVES AND OBJECT-ORIENTED
PROGRAMMING FOR OPTIMIZATION METHODS

Guido Buzzi-Ferraris and Flavio Manenti

Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”
Piazza Leonardo da Vinci 32, 20133 Milano, ITALY

This research activity is mainly aimed at showing potentialities in coupling object-oriented programming with
parallel computing. Wide margins of benefits could be obtained at the same time in algorithm efficiency and
robustness with a relatively small programming effort. The case of unconstrained multi-dimensional
optimization in presence of multimodality, discontinuities, and narrow valley issues is proposed as quantitative
example.

1. INTRODUCTION

We are undergoing two silent revolutions that directly involve Process Systems Engineering (PSE) and
Computer-Aided Process Engineering (CAPE) communities, besides many other scientific and industrial areas:
the object-oriented programming and the parallel computing on personal computer (Buzzi-Ferraris, 2010). Both
of them have been widely discussed in the literature as they significantly modify the numerical analysis as it was
conceived since the second part of the previous century as well as the way to apply numerical methods and
algorithms for solving more and more complex and multifaceted issues.

Nevertheless, since it is not clearly stated in the current literature, it is worth remarking that the parallel
computing is easy to integrate in object-oriented programming and their combination seems to be particularly
appealing as many objects generated by the same class might run simultaneously on different processors or
cluster nodes. By thinking parallel and object-oriented both together, it is possible to write by new many
algorithms which were not considered for solving numerical problems because of their inferior performances in
procedural programming and sequential computing.

Thus, this research activity specifically deals with the development of very robust optimizers that exploit all
features of object-oriented programming (Buzzi-Ferraris, 1994; Buzzi-Ferraris and Manenti, 2010a), which
allow going beyond the procedural programming and its limitations, and the shared memory that is nowadays
available on common multi-processor machines (distributed memory machines such as clusters are not
considered for the time being, even though the same reasoning here described can also be extended to this branch
of parallel computing).

Basic concepts of coupling parallel computing with object-oriented programming for improving the optimizer
robustness and efficiency are stated in Paragraph 2. Some well-known literature tests involving strong and weak
multimodality, very narrow valleys, discontinuities in both the function and in its derivatives, and functions that
are undefined somewhere in the domain are adopted as validation cases in Paragraph 3.

2. EXPLOITING SHARED MEMORY TO IMPROVE EFFICIENCY AND ROBUSTNESS

Conventional programs easily fail when some specific families of optimization problems have to be solved.
Actually, very robust optimizers are required in the following cases:

e The function and/or its derivatives are discontinuous

e The function cannot be approximated by a quadric in correspondence with the optimum

57

Chemical Engineering Greetings to prof. Sauro Pierucci

e The function is undefined in some regions and the domain cannot be analytically described

e Very narrow valleys (or steep walls) are present

e The function is multimodal and the global optimum is required
Let us investigate the problem of very narrow valleys. From this perspective, the OPTNOV’s method (Buzzi-
Ferraris, 1967) seems to be one of the most appealing approach. It is important to realize the reason that makes
traditional methods such as Simplex (Nelder and Mead, 1965), Hooke-Jeeves (Hooke and Jeeves, 1961),
Rosembrock (Rosenbrock, 1960), Conjugate Gradients, Quasi-Newton ineffective when the function valleys are
particularly narrow. All these methods perform one-dimensional searches along some specific axes selected in
accordance with the method used. For example, Rosembrock’s method is based on the rotation of axes of search
to move towards the bottom of the valley. When the valley is very narrow, as qualitatively shown in Figure 1, it
might happen that the Rosembrock’s axis does not lead to any improvement of the function even though it is
reasonably oriented like the bottom of the valley. The same condition occurs when all the traditional methods
adopt whatever axis to perform a one-dimensional search.

Xy

(&

Figure 1. Traditional methods fail with very narrow valleys.

To exploit the search direction that inaccurately detects the bottom of the valley, it is necessary to change the
point of view. OPTNOV’s method is based on some simple ideas that make it particularly robust, but also
efficient in the case of very narrow valleys:

e Whatever optimization algorithm is able to quickly find the bottom of the valley by starting from a point
outside the same valley

e The line joining two points on the bottom of the valley is a reasonable valley direction; therefore a point
projected along such a direction has good probabilities to be close to the valley

e Nevertheless, this valley direction must not be used as the direction of the one-dimensional search, rather
it should be the direction where a new point is projected along

e The new projected point in the valley direction should not be discarded even though it is worse than the
previous one; it should be adopted as the new starting point for the minimum search.

e This search must be performed in the sub-space orthogonal to the valley direction to prevent the problem
of having small steps. In fact, if the axis is used to minimize the function (above all when it is the first axis
of search), it is possible to go back to the previous point A (see Figure 1), by obtaining a very small
movement.

This philosophy is particularly effective in an object-oriented programming coupled with parallel computing as
many reduced optimizations must be carried out starting from distinct points and they can be independently
solved. Consequently, this philosophy of simultaneously solving different optimization problems by starting
from distinct guesses allows rationally facing even the search for the global minimum.

58

Chemical Engineering Greetings to prof. Sauro Pierucci

The concept to build up a program for effectively tackling all aforementioned issues is rather trivial as it is
possible to develop an optimizer consisting of N objects, where N is the number of available processors and
each of them uses in turn an optimizer reasonably robust.

Hence, two distinct problems must be solved: the first is the selection of points used in the N objects as initial
guess and the second is which kind of optimizer must be used within each of these N objects.

For the sake of clarity, let us call outer the optimizer used to manage the overall optimization problem and to
select the N starting points for the N objects and inner the optimizer used within each one of the N objects.
The inner optimizer must be particularly effective to find out the local minimum or the bottom of the valley even
in presence of function/derivative discontinuities, slightly narrow valleys, and functions that cannot be
approximated by quadratic functions or furthermore that can not be evaluated anywhere.

The outer optimizer must be particularly robust to investigate the function at the macroscale and to have good
probabilities to find the global optimum and the proper movement along very narrow valleys. It is worth
remarking that every optimization program, although particularly robust, can ensure neither the global optimum
nor the solution of some hard problems.

2.1 Outer Optimizer
A lower bound of computational power has been selected: at least a QUAD CORE machine is needed since the

outer optimizer requires at least four processors: three of them for applying the OPTNOV’s philosophy and the
fourth to poll the function elsewhere. The procedure is schematized in Figure 2. A and B are two points on the
bottom of the valley. The line passing through them is a reasonable valley direction and the starting points
simultaneously selected for three objects are in correspondence with the new points I, II, and III by exploiting
the available processors. Distances ¢ and ¢ among points can be reduced or expanded according to the results:
for example, if the point III brings to a better inner optimum, distances are expanded.

If N >3 processors are available, the remaining N —3 processors are used to perform other simultaneously
inner optimizations starting from different points (IV...), but, contrarily to what is usually carried out in genetic
algorithms, these additional points are not randomly selected. This selection is efficiently carried out by using
those techniques adopted and proven for the optimal design of experiments (Buzzi-Ferraris, 1999; Buzzi-Ferraris
and Manenti, 2009; Manenti and Buzzi-Ferraris, 2009; Buzzi-Ferraris and Manenti, 2010b). While the inner
optimizations of each object go on, the best solutions are collected. The new starting points are selected to
maximize the minimum distance with respect to the collected points (see Figure 3).

=
@ Collected Points

© $¢ new Point
Valley direction O

MaxMin
Distance;

& T

Figure 2. Points A and B are on the bottom of the valley ~ Figure 3. The minimum distance between each point
(A is the best one); points I, II, and III are the possible of the grid and the collected points is evaluated. The
point projections along the valley direction; point IV is new starting point is the point with the maximum

used to poll the function in an unexplored region. minimum distance.

59

Chemical Engineering Greetings to prof. Sauro Pierucci

2.2 Inner Optimizer
It is worth remarking that even the inner optimizer must be opportunely robust:

e to manage possible first- and second-order discontinuities of the function;

e to overcome possible regions where the function is undefined;

to effectively find a local minimum or a point at the bottom of the valley;

to efficiently tackle the problem of slightly narrow valleys.

A modified version of the Nelder-Mead’s Simplex method is used since the original Simplex method is
reasonably robust to face function and derivative discontinuities, but not enough robust to solve other issues
(Conn et al., 2009). Moreover, the original version of Simplex is not predisposed to face infeasible points of the
function, but in this case the modification is trivial.

3. NUMERICAL TESTS

Many numerical tests were carried out to check the algorithm robustness for problems of different dimensions.
Tests of Table 1 are well-known literature functions for:
e Strong multimodality: Rastrigin (1) and Haupt (2) functions were adopted (Figure 4 and Figure 5).
e Weak multimodality: the function is constant along at least one direction in correspondence of some local
minima. Michalewicz’s function (3) was adopted (Figure 6).
e Discontinuities and regions where the function is not defined (4). Figure 7 shows the function against the
variable x, for the optimal value of x, .

e Extremely narrow valleys: valleys consisting of steep walls make the search of the minimum a problematic
issue for many optimizers. Buzzi-Ferraris’s function (5) is adopted and reported in Figure 8.

Frastrin =_110'n+i(x,2—10cos(27rxi)) N
i=1

FHAUPTz_ay a>0 . _ 4 .

{FHAUPT =0, a<0 where: a = 1;[(\/2 Sln(27rxi)) o

o (i)Y
Frcruewicz = —Z Slﬂ(x,»)-(sm(i JJ 5

i=1

Fypmr-rennanis.a = \/—945 43,1689 4.3 (-950-+.3, (23043, (-25+x,))) | ¢ + @
+10|x, —10x,|+10|x, — 6|

2 2

FBUZZI—FERRAR]S,B = I:xz - 10000()(1 - 1)(x1 - 3)(x1 - 5)(x1 - 7)(x1 _9)] + (xl - 8) (&)
The algorithm here proposed is able to find the global minima of all functions (1)-(5) as reported in Table 1. In
addition, the starting vector and the total amount of iterations is reported. It is worth remarking that the overall
computational effort corresponds to the CPU time required to solve all the iterations divided by the number of

available processors.

60

Chemical Engineering Greetings to prof. Sauro Pierucci

Haupt Rastrigin

Y \ NI
i Qm,n] ; “
Jf \J.‘ ’ W'

9
WMM ‘6"“.\1 V‘II"{‘;?O ‘h!"‘"”ﬂ%’,’h
!r,m T

a ¢\\\Mrm“\‘ ,,l.. :
T N o l[Il .f
QRS ':'w LY
104, it "r"l.'"‘m\"',} ““”'

00
Figure 4. Haupt function Figure 5. Rastrigin function
Michalewicz
|
L
T~ :
L
1.5 ~ |
e
05 -
Figure 6. Michalewicz function Figure 7. Buzzi-Ferraris’s function A

Solution
/x1: 8.00000000000
%x2:-1.050000e+006

y: 1.092632e-023

+107

Starting point
x1: 1.000000000
x2: 0.000000000
y: 49.00000000

-107

10

Figure 8. Buzzi-Ferraris’s functions B

61

5

o

Chemical Engineering Greetings to prof. Sauro Pierucci

Table 1. Optimization tests

Starting point Number of iterations ~ Optimum value
Rastrigin n =2 x, =8. 2414 -240
Rastrigin n =10 x, =8. 8357 -1200
Haupt x, =0. 5559 -19.8630560097267
Michalewicz n=2 x, =3. 1683 -1.80130340983985
Michalewicz n =10 X, =3. 20144 -9.660152
Buzzi-Ferraris A X, = {1,;1,} 16714 6.708389
Buzzi-Ferraris B X, = {1 ,;(),} 1085 1.009e-018

4. CONCLUSIONS AND FUTURE DEVELOPMENTS

This preliminary research activity shows the way and reports some benefits coming from the interaction of
parallel computing and object-oriented programming. Specifically, the example of C++ class for robust
optimization that could generate a series of objects so that each of them could run on a specific processor by
increasing the same optimizer robustness with a small programming effort is proposed.

5. REFERENCES

Buzzi-Ferraris, G., 2010, New trends in building numerical programs. Computers and Chemical Engineering
doi:10.1016/j.compchemeng.2010.07.004.

Buzzi-Ferraris, G., 1994, Scientific C++. Building Numerical Libraries, the Object-Oriented Way. 2nd Ed.,
479pp, Addison-Wesley, Cambridge University Press, ISBN 0-201-63192-X.

Buzzi-Ferraris, G., & Manenti, F., 2010a, Fundamentals and Linear Algebra for the Chemical Engineer: Solving
Numerical Problems. Wiley-VCH, Weinheim, Germany.

Buzzi-Ferraris, G., 1967, Ottimizzazione di funzioni a piu variabili. Nota I. Variabili non vincolate. Ing. Chim.
It. 3, 101.

Buzzi-Ferraris, G., 1999, Planning of experiments and kinetic analysis. Catalysis Today 52, 125-132.

Buzzi-Ferraris, G., & Manenti, F., 2009, Kinetic models analysis. Chemical Engineering Science 64(5), 1061-
1074.

Buzzi-Ferraris, G., & Manenti, F., 2010b, Interpolation and Regression Models for the Chemical Engineer:
Solving Numerical Problems. Wiley-VCH, Weinheim, Germany.

Conn, A.R., Scheinberg, K., & Vicente, L.N., 2009, Introduction to Derivative-free Optimization. MPS-SIAM
Series on optimization.

Hooke, R., & Jeeves, T.A., 1961, "Direct Search" Solution of Numerical and Statistical Problems. J. of the Assn.
For Computing Machinery 8, 212-229.

Manenti, F., & Buzzi-Ferraris, G. (2009). Criteria for Outliers Detection in Nonlinear Regression Problems. In J.
Jezowski & J. Thullie (Eds.), Computer Aided Chemical Engineering (Vol. 26, pp. 913-917).

Nelder, J.A., & Mead, R., 1965, A simplex method for function minimization. Computer Journal 7, 308-313.

Rosenbrock, H.H., 1960, An Automatic Method for Finding the Greater or Least Value of a Function. the
Computer Journal 3, 175-184.

62

	
	
	facciata.pdf
	
	

	Presentation - Caetani.pdf
	
	

	Indice.pdf
	
	
	
	

	libro
	Introduction.pdf
	
	

	B_dopo biografia_ Klemes.pdf
	
	
	
	
	
	
	
	
	
	

	1Artioli.pdf
	
	
	
	
	
	
	
	
	
	

	2Barbosa-Povoa.pdf
	
	
	
	
	
	
	
	
	
	

	3Bozzano.pdf
	
	
	
	
	
	
	
	
	
	
	
	

	4Bratfalean.pdf
	
	
	
	
	
	
	
	
	
	
	
	

	5Buzzi-Ferraris.pdf
	
	
	
	
	
	

	6Copelli.pdf
	
	
	
	
	
	
	
	
	
	

	7Cuoci.pdf
	
	
	
	
	
	
	
	

	8DiBenedetto.pdf
	
	
	
	
	
	
	
	
	
	

	9Donazzi.pdf
	
	
	
	
	
	
	
	

	10Galletti.pdf
	
	
	
	
	
	
	
	

	11Grottoli.pdf
	
	
	
	
	
	
	
	

	12Heyen.pdf
	
	
	
	
	
	
	
	
	
	

	13Iaquaniello.pdf
	
	
	
	
	
	
	
	
	
	

	14Khamseh.pdf
	
	
	
	
	
	

	15Kuntsche.pdf
	
	
	
	
	
	
	
	
	
	

	16Lima.pdf
	
	
	
	
	
	
	
	
	
	

	17Maccagni.pdf
	
	
	
	
	
	
	
	

	18Manca.pdf
	
	
	
	
	
	
	
	

	19Manenti.pdf
	
	
	
	
	
	
	
	

	20Laiglecia.pdf
	
	
	
	
	
	
	
	

	21Maschio.pdf
	
	
	
	
	
	
	
	
	
	

	22Molinari.pdf
	
	
	
	
	
	

	35Palazzi.pdf
	
	
	
	
	
	
	
	

	23Pellegrini.pdf
	
	
	
	
	
	
	
	
	
	
	
	

	24Pinali.pdf
	
	
	
	
	
	
	
	

	25Puigjaner.pdf
	
	
	
	
	
	
	
	

	26Sabatini.pdf
	
	
	
	
	
	
	
	
	
	

	27Sala.pdf
	
	
	
	
	
	
	
	
	
	

	28Scali.pdf
	
	
	
	
	
	
	
	
	
	
	
	

	29Sin.pdf
	
	
	
	
	
	
	
	
	
	

	30Tugnoli.pdf
	
	
	
	
	
	
	
	
	
	

	31Van Geem.pdf
	
	
	
	
	
	
	
	
	
	
	
	

	32Van Goethem.pdf
	
	
	
	
	
	
	
	
	
	

	33Velardi.pdf
	
	
	
	
	
	
	
	
	
	
	
	

	34Vianello.pdf
	
	
	
	
	
	
	
	
	
	

	36Letter - Bonucci.pdf
	
	

	technip.ps
	
	

	38Letter - Wagner.pdf
	
	
	
	

