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Highlights 

• Lefort’s Ag-based catalyst enabled Ethylene Oxide Production by direct oxidation 

• Several unique features of process made tubular reactors the preferred option 

• Tubular reactors combine chemical reaction engineering and heat transport phenomena 
 

1. Introduction 

The worldwide production of ethylene oxide (EO) currently exceeds 20 MM t/yr. Since 1937, when Union 
Carbide opened its first EO plant, partial oxidation of ethylene has been performed using the Ag-based 
catalyst system developed by Theodore Lefort. The reaction network consists of the desired, mildly 
exothermic pathway leading to the formation of EO and the highly exothermic combustion of either ethylene 
or EO to from CO2 and H2O. On the commercial scale, the chemistry is conducted using shell and tube heat 
exchange reactors, or more simply just “tubular reactors.”  The catalyst is contained within thousands of 
small diameter tubes typically in the range of 20 – 40 mm. On the shell side, a cooling medium is used to 
remove the heat of reaction. To avoid thermal runaway, the tubular reactor must be carefully controlled by 
combining chemical reactor engineering and heat transport phenomena to yield a solution capable of safely 
producing EO, with a selectivity up to 90%.   
 
2. Methods 

Relevant kinetic parameters were obtained from existing peer reviewed literature. Modeling was performed 
using Athena Visual Studio.  

3. Results and discussion 

It may seem obvious that ethylene epoxidation should be carried out in tubular reactors, but numerous 
technical hurdles needed to be overcome to commercialize this technology. First and foremost, a catalyst 
capable of conducting the chemistry was required. Over the past 80 years, numerous advancements have 
been made in catalyst formulations, but no substitute for the silver based system has been demonstrated. 
Second, the Ag-based catalyst works under relatively mild conditions, which enables users to select boiling 
water on the shell-side as a cooling medium. Third, the chemistry is not limited by equilibrium, but 
significant flammability concerns for both the combined feed and products are present. Being able to run 
under mild conditions is important since the flammability envelope grows as temperature rises. Fourth, 
thermal destruction and/or sequential oxidation of the product encourages low per-pass conversion. Low 
conversion means that the partial pressures of the reactants are approximately constant. Therefore, the rate of 
reaction along the length of the tube and corresponding heat release also are approximately constant. Finally, 
the price difference between ethylene and ethylene oxide was sufficient to justify the capital expenditure and 
operating expenses resulting from operations at low per pass yield. 
 
The results shown in Fig.1 illustrate the hypothetical difference between operation in a tubular, isothermal 
reactor (A) and a more traditional fixed-bed, adiabatic reactor (B). In the case of the tubular reactor the 
conversion of ethylene is approximately 10%, with a selectivity to EO of 80%. Unfortunately, the adiabatic 
reactor experienced a runaway, with reactor exit temperatures near 800 °C and no EO in the final product. In 
the runaway scenario O2 becomes limiting the reagent and is completely consumed. In both cases ethylene 
conversion was approximately 10%. The inlet temperature for the adiabatic reactor could have been lowered 



 

to avoid thermal runaway, but the fixed bed reactor is still very susceptible to thermal runaway. For example, 
a reactor inlet temperature of 168 °C delivers an ethylene conversion of 6.9% with 82% selectivity to EO. 
Increasing the temperature to 170 °C triggers another runaway. 
 
During the lecture, additional tubular reactor design parameters will be discussed including the impact of 
heat transfer coefficients, tube diameter, length of the catalyst bed, different modes of operation (e.g., boiling 
cooling medium vs high flowrate pump-around). 
 
Research continues on identifying an alternative EO production route, but at present EO is still produced by 
direct oxidation of ethylene in tubular reactors. Thus, the industrial focus continues to be on catalyst 
improvements that benefit the tubular reactor system -- namely, higher activity and higher selectivity 
catalysts, with the goal to also shut down the sequential combustion pathway. Lower Ag catalysts with 
longer run lengths are also desired, but selectivity continues to be the primary driver, as each 1% (absolute, 
i.e., 89 to 90%) increase in selectivity results in approximately 1 MM $/yr reduction in ethylene destruction 
costs. 
 

0

50

100

150

200

250

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0% 20% 40% 60% 80% 100%

T
em

p
er

at
u

re
, 

°
C

m
o

l%
 

CatWeight

EO CO2 T, C A

 

0

100

200

300

400

500

600

700

800

900

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%
4.5%
5.0%
5.5%
6.0%

0% 20% 40% 60% 80% 100%

T
em

p
er

at
u

re
, 

°C

m
o

l%
 

CatWeight

EO CO2 T, C B

 

Figure 1. Identical reactor inlet temperatures (225 °C), reactor pressure (18 atm) for (A) an isothermal tubular reactor and (B) an 
adiabatic, fixed bed reactor. The same kinetic model and parameters were used for each simulation. 

 

4. Conclusions 

Careful control of process conditions to avoid thermal runaway and maintain high selectivity to EO are of the 
utmost importance. Tubular reactors are ideal for this application because the Ag-based catalyst works under 
relatively mild conditions and thermal destruction and/or sequential oxidation of the product encourages low 
per-pass conversion. Key design parameters for EO tubular reactors will be discussed with examples 
provided via mathematical modeling.  
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