

Explosion Limits Estimation and Process Optimization of Direct Propylene Epoxidation with H2 and O2

Mengke Lu, Gang Qian, Xuezhi Duan^{*}, Weikang Yuan and Xinggui Zhou^{*}

State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

*Corresponding author: <u>xzduan@ecust.edu.cn</u>; <u>xgzhou@ecust.edu.cn</u>

Highlights

- Explosion limits of a multi-component gas mixture are estimated by modified proportional distribution method.
- The estimated results are validated by the classic Le Chatelier's Rule.
- Reactor optimization is carried out in gPROMS under commercially high reactant concentrations and safe operation conditions.
- Optimized results demonstrate the commercial potential of the direct propylene epoxidation with H₂ and O₂ to produce propylene oxide.

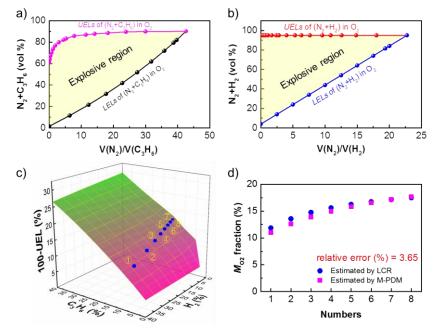
1. Introduction

Direct propylene epoxidation with H_2 and O_2 is an economic and environmentally friendly process to produce propylene oxide (PO), which is an essential and high-value added intermediate. Recently, considerable efforts have been devoted to developing active and stable catalysts, and Ti⁴⁺-containing material supported Au catalysts are found to be feasible for commercial production of PO [1]. However, the process suffers from a safety problem due to the potential explosion risk of the feed gas, which is a multi-component mixture containing not only flammable gas (i.e., C₃H₆ and H₂) and inert gas (i.e., N₂), but also oxidizer (i.e., O₂). One solution to the problem is to employ membrane reactor as O₂ distributor to separately feed O₂ from C₃H₆, H₂ and N₂ [2]. Another solution is to dilute feed gas with a large amount of N₂, which would inevitably lead to low reaction performances due to the low reactant concentrations. Thus, there is a need to estimate explosion limits of the C₃H₆, H₂ and N₂ mixture in O₂ toward the process optimization of the reaction under commercially high reactant concentrations and safe operation conditions.

In this work, the explosion limits of C_3H_6 , H_2 and N_2 mixture in O_2 were estimated. By using the estimated explosion limits as constraints to keep the composition of the feed gas outside explosive region, optimizations of the reaction in a packed-bed reactor were carried out in gPROMS. The optimized results demonstrated the commercial potential of the direct propylene epoxidation with H_2 and O_2 to produce PO.

2. Methods

The explosion limits of C_3H_6 , H_2 , and N_2 mixture in O_2 were estimated by the modified proportional distribution method (M-PDM), these results were then validated by the classic Le Chatelier's Rule (LCR).


A mathematical model of the packed-bed reactor was developed by using gPROMS to simulate the direct propylene epoxidation with H₂ and O₂. Based on the model, optimizations were carried out, where H₂ efficiency was considered as the objective, inlet temperature (T_{in}), inlet velocity (u_0) and inlet partial pressure of C₃H₆, H₂ and O₂ (i.e., $P_{in}(H_2)$, $P_{in}(C_3H_6)$ and $P_{in}(O_2)$) as the decision variables. Moreover, constraints in the optimization were set as following: the composition of feed gas mixture outside of the explosive region, 2.0% \leq outlet PO fraction \leq 2.8%, the hotspot temperature \leq 463 K, C₃H₆ conversion \geq 10% and PO selectivity \geq 90%.

3. Results and discussion

For the reaction, the O_2 fraction is less than the rest gases (i.e., C_3H_6 , H_2 , and N_2), the composition of the feed gas could not reach the lower explosion limits of C_3H_6 , H_2 , and N_2 mixture. Therefore, only the upper

explosion limits of C_3H_6 , H_2 , and N_2 mixture (*UELs*) in O_2 were calculated by the M-PDM, which were verified by the LCR, as presented in **Figure 1**. The *UELs* (eight blue dots in Fig. 1c) calculated by the classic LCR were in good agreements (relative error (%) = 3.65) with those calculated by the M-PDM, which indicated the reliability of the M-PDM.

Figure 1. (a) Explosion limits of C_3H_6 and N_2 mixture in O_2 ; (b) Explosion limits of H_2 and N_2 mixture in O_2 ; (c) *UELs* of C_3H_6 , H_2 , and N_2 mixture in O_2 estimated by the M-PDM (3D image) and the LCR (eight blue dots); (d) Error analysis of *UELs* estimated by the M-PDM and the LCR.

Reactor performance was further studied by the optimizations of the PBR in the gPROMS. The optimized values for the decision variables were as following: $T_{in} = 423$ K, $u_0 = 0.05$ m/s, $P_{in}(H_2) = 14.32$ kPa, $P_{in}(C_3H_6) = 17.12$ kPa and $P_{in}(O_2) = 28.02$ kPa. With these optimized decision variables, the H₂ efficiency could be maximized to 17.4 %, and meanwhile all the constraints were satisfied. Moreover, the C₃H₆ conversion and PO selectivity were enhanced to 10% and 92.6%, respectively, even achieving/exceeding the targeted values (10% and 90%, respectively) [3]. The outlet PO fraction was increased to 2.8%, being comparable to that of ethylene oxide (1.0-3.0%) in commercial plants [4].

4. Conclusions

In summary, we proposed the modified proportional distribution method to estimate the explosion limits of C_3H_6 , H_2 and N_2 in O_2 , which were validated by the classic Le Chatelier Rule. Combined with the obtained explosion limits, process optimizations of the reaction in a packed-bed reactor were done in gPROMS under safe operation conditions. The optimized results showed that the H_2 efficiency (17.4%) was well enhanced, with the C_3H_6 conversion (10.0%) and PO selectivity (92.6%) achieving/exceeding the targeted values (10% and 90%, respectively). Moreover, the optimized outlet PO fraction reached to 2.8%, being comparable to that of ethylene oxide (1.0-3.0%) in commercial plants. The above results showed the feasibility of commercial PO production by the direct propylene epoxidation with H_2 and O_2 .

References

- [1] X. Feng, X.Z. Duan, G. Qian, X.G. Zhou, D. Chen, W.K. Yuan, Appl. Catal. B-Environ. 150-151(2014) 396-401.
- [2] M.K. Lu, G. Wang, Z.H. Zhang, X.Z. Duan, W.K. Yuan, X.G. Zhou, Chem. Eng. Process. (2017) In Press.
- [3] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 116 (2004) 1546-1548.
- [4] B. Elvers, S. Hawkins, W. Russey, Ullmann's Encyclopedia of Industrial Chemistry, fifth ed., VCH, Weinheim, 1985.

Keywords

Explosion limits estimation; Direct propylene epoxidation with H₂ and O₂; Optimization; Safe operation