

Modeling the role of CO and C₃H₆ in NO_x reduction over an SCR catalyst

Shephali Singh¹, Divesh Bhatia¹*

1 Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, INDIA -110016 *Corresponding author: dbhatia@chemical.iitd.ac.in

Highlights

- Synergy between CO and NH₃ increases NO_x conversion for slow SCR at low temperatures
- NO formed by C₃H₆-NO₂ interaction creates local fast SCR conditions at low temperatures
- Decrease in NO_x conversion for slow SCR at high temperature is not due to C_3H_6 adsorption

1. Introduction

Hydrocarbon selective catalytic reduction (HC-SCR) technology utilizes the on-board fuel to selectively reduce the diesel NO_x emissions under oxygen-rich conditions. In addition to NH₃, species such as CO and C_3H_6 (representative of unburnt hydrocarbons) that are present in the diesel exhaust have the potential to reduce NO_x over SCR catalysts. Kim et al. [1] recently reported that the presence of C_3H_6 along with NH₃ increases the NO_x conversion under cyclic conditions. Zheng et al. [2] also reported an increase in the NO_x conversion under standard and slow SCR conditions in the presence of CO and C_3H_6 . In the current work, global kinetic models are developed for the CO-NO₂ and C_3H_6 -NO₂ interactions. These models are then combined with the NH₃-SCR kinetic model to predict the effect of CO and C_3H_6 on the overall NO_x conversions under slow and fast SCR reaction conditions over a commercial Cu-chabazite SCR catalyst.

2. Methods

A one-dimensional two-phase model is used in the current work. A nitrate based mechanism was used to develop a kinetic model for predicting the NO_2 reduction by CO to form NO. This model was then used to explain the C_3H_6 - NO_2 interactions through global reactions leading to the formation of N_2 , NO, CO and CO_2 . The CO- NO_2 and C_3H_6 - NO_2 models were further combined with the NH_3 -SCR model to elucidate the effect of the reductant species such as CO and C_3H_6 on slow and fast SCR reactions at different temperatures. The kinetic models were validated by using the experimental data reported by Zheng et al. [2] under different operating conditions.

3. Results and discussion

A comparison of our model predictions with the experimental data reported by Zheng et al. [2] on NO_2 reduction by CO and C_3H_6 is shown in Figure 1. The CO-NO₂ interaction is explained by the formation of surface nitrates and nitrites through a disproportionation reaction (R1). In agreement with the experimental data, the model predicts that NO is the major product formed during the NO₂ reduction by CO. CO is found to react with the nitrates to form nitrites (R2), which favor the reduction of NO₂ to NO through its reaction with the nitrites (R3).

$$2 \operatorname{NO}_2 + \operatorname{H}_2 O \leftrightarrow \operatorname{HNO}_3 + \operatorname{HNO}_2$$
(R1)

$$HNO_3 + CO \rightarrow HNO_2 + CO_2 \tag{R2}$$

$$HNO_2 + NO_2 \leftrightarrow HNO_3 + NO$$
 (R3)

Kim et al. [1] reported the formation of CO during NO₂ reduction by C_3H_6 . Thus, the interaction of C_3H_6 and NO₂ is explained in our model by global reactions leading to the formation of NO, N₂ and CO. Similar to the case of CO, NO is formed as the major product during the reduction of NO₂ with propene. On comparing the overall NO_x conversions for the two reductants, it is observed that the model can predict that C_3H_6 is a better reductant than CO for all the temperatures. It is also observed that for temperatures lower than 350 °C, NO₂ conversion is higher with C_3H_6 as the reductant, whereas close to complete NO₂ conversion is obtained with both the reductants for temperatures higher than 350 °C.

To understand the effect of the reductants such as CO and C_3H_6 on NH₃-SCR, the experimental trends reported by Zheng et al. [2] were modeled based on the global reactions proposed by Metkar et al. [3]. Figure 2 shows the effect of CO and C_3H_6 on NH₃-SCR reactions under slow SCR conditions. The model predictions are obtained by combining the NH₃-SCR model with the CO-NO₂ and C_3H_6 -NO₂ kinetic models. It is shown that at low temperatures, the NO_x conversion is higher when CO and C_3H_6 are used along with NH₃ as compared to the case when only NH₃ is used. In contrast, the NO_x conversions are lower with CO and C_3H_6 at high temperatures. The presence of C_3H_6 reduces the NO_x conversion significantly at high temperatures, whereas the inhibitive effect of CO is relatively low. The promotional effect of CO at low temperatures is explained by the synergistic effect of CO and NH₃ in enhancing the consumption of NO₂ through the disproportionation reaction (R1). The enhancement in NO_x conversion at low temperatures in the presence of C_3H_6 is explained by the formation of NO, which creates local fast SCR conditions [2]. The reduced NO_x conversion in the presence of CO and C_3H_6 is explained by the selective reduction of NO₂ to NO by CO and C_3H_6 instead of its reduction by NH₃ through SCR reactions. It is also reasoned that the inhibiting effect is not due to the competitive adsorption between NH₃ and the reductants since the inhibiting effect was found to increase with temperature.

Figure 1. Comparison of NO₂ and NO_x conversion during NO₂ reduction with CO and C_3H_6 at various temperatures. Reaction Conditions: 500 ppm NO₂, 1% CO (if present), 500 ppm C₃H₆ (if present) and 2.5% H₂O.

Figure 2. Effect of CO and C_3H_6 on NH₃-SCR under slow SCR conditions. Reaction Conditions: 500 ppm NO₂, 500 ppm NH₃, 1% CO (if present), 500 ppm C_3H_6 (if present) and 2.5% H₂O.

4. Conclusions

Kinetic models are developed to predict the effect of CO and C_3H_6 on NH₃-SCR under slow SCR conditions. The kinetic models are able to explain the experimental data reported by Zheng et al. [2]. NO is predicted to be the major product formed during the reduction of NO₂ by CO and C_3H_6 . The CO-NO₂ and C_3H_6 -NO₂ models when combined with the NH₃-SCR model are able to capture the promotional effect of CO and C_3H_6 on NO_x conversion at low temperatures and the inhibiting effect at high temperatures under slow SCR conditions. The increase in NO_x conversion in the presence of C_3H_6 at low temperatures is because of the local fast SCR conditions created due to NO formation whereas the inhibiting effect at high temperatures is explained by the selective reduction of NO₂ to NO by C_3H_6 . The effect of CO and C_3H_6 on NH₃-SCR under fast SCR conditions were also analyzed and the results will be presented in the full manuscript.

References

- [1] M. Y. Kim, H.Y. Choi, M. Crocker, Catal. Today 231 (2014) 90-98.
- [2] Y. Zheng, M. P. Harold, D. Luss, Catal. Today 264 (2015) 44-54.
- [3] P. S. Metkar, M. P. Harold, V. Balakotaiah, Chem. Eng. Sci. 87 (2013) 223-230.

Keywords

Hydrocarbon Selective Catalytic Reduction (HC-SCR); NH₃-SCR; Cu-chabazite; global kinetics.