

Direct DME synthesis over bifunctional catalysts: preparation and characterization of a core@shell system

Giulia Baracchini¹, Michael Klumpp¹, Albert Machoke², Wilhelm Schwieger², Roland Dittmeyer^{1,*}

1 Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany 2 Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany

*Corresponding author: roland.dittmeyer@kit.edu

Highlights

- The concept of one-stage DME synthesis via core@shell catalysts is presented.
- CuO/ZnO/Al₂O₃@zeolite catalysts were prepared and characterized.
- Focus on MeOH core catalyst synthesis via flame spray pyrolysis and spray drying.

1. Introduction

In the scenario of the energy transition the conversion of renewable electricity into fuels and chemicals is widely discussed (power-to-X technologies). One option is the conversion of hydrogen (from water electrolysis) together with CO and/or CO₂ into dimethyl ether (DME) *via* methanol (MeOH) as an intermediate product (Fig. 1a). The process leads to the production of an excellent, efficient alternative to diesel fuel, with almost smoke-free combustion ^[11]. In case of small scale, decentralized applications the major drawback of the conventional two-stage DME synthesis (Fig. 2b) is the thermodynamic limitation of CO-conversion (X_{CO}). To overcome the low X_{CO} equilibrium, the one-stage synthesis of DME from synthesis gas in microstructured reactors is a promising process: the coexistence of the both catalysts in the reactor allows to shift the MeOH synthesis equilibrium by its direct dehydration to DME; by a core@shell catalyst configuration, a selectivity to DME of theoretically 100 % can be reached (Fig. 1c)^[2, 3].

Fig. 1: a) Reactions for the DME synthesis from synthesis gas over b) two sequential steps and c) core@shell catalytic system

This contribution presents the preparation of core@shell catalysts, focusing on the core synthesis, as a successful zeolite shell synthesis requires mechanically stable core particles bigger than 20 μ m, in order to avoid any alteration during the process. Moreover, the influence of a whole as well as a partial zeolite shell coverage is discussed.

2. Methods

The CuO/ZnO/Al₂O₃ catalyst is prepared *via* semi-continuously flame spray pyrolysis (FSP-CZA). Nitrate salts dissolved in pure ethanol are fed into a nozzle and dispersed using oxygen. The FSP-CZA is collected by a bag-house filter. The proper core size is reached by (a) agglomerating the calcined FSP-CZA *via* spray drying (SD-CZA), or b) pelletizing and grinding the FSP-CZA (P-CZA). The shell was synthesized *via* a two-step hydrothermal synthesis procedure of in-situ seeding and secondary growth. By adjusting the synthesis parameters of the second synthesis step, the final shell was either dense, obtaining SD-c@s (from SD-CZA) and P-c@s (from P-CZA), or not fully intergrown with a zeolite partial coverage (SD-c@n-s). The influence of calcination on the FSP-CZA is studied with XRD and TPR. SD-CZA is characterized analyzing its sphericity (SEM) and mechanical resistance by measuring the particle size distribution before and after

ultrasonic treatment (static light scattering). The presence of a dense zeolite layer and its thickness is investigated by SEM. P-CZA, SD-c@s and SD-c@n-s were tested in a µBerty reactor.

3. Results and discussion

The FSP in combination with the bag-house filter enabled a constant production rate of up to 20 g day⁻¹ of catalyst powder. Fig. 2a shows the SEM picture of the spray dried SD-CZA. As shown in Fig. 2b, *via* ultrasonic treatment the mechanical stability of the catalyst was confirmed, as only a negligible difference of the core size distribution is visible after sonication. Both core materials, SD-CZA and P-CZA, have successfully been enwrapped by a zeolite shell which covers the whole surface (e.g. Fig. 2d). In the case of P-CZA the coating process is much easier in terms of handling the material due to the larger particle size. Fig. 2e shows the SD-c@n-s catalyst: both CZA and zeolite are accessible from the surface. From the catalytic tests the FSP-CZA shows activity for the MeOH synthesis (X_{CO} of 8.9 and 10.6 % for the calcined P-CZA and the P-CZA respectively; the reference commercial catalyst showed 17.7 %). The lower activity of the calcined catalyst for the MeOH synthesis is due to the increase of only 1.7 % with no DME detectable, while for the SD-c@n-s catalyst X_{CO} of 6.5 % was reached and DME was produced, which indicates a more difficult diffusion of the components in presence of a dense shell.

Figure 2: a) SEM of the spray dried core catalyst SD-CZA and b) its particle size distribution before and after ultrasonic bath; SEM pictures of c) SD-c@s catalyst d) zoom on the shell surface, e) zoom on the external surface of the SD-c@n-s catalyst

4. Conclusions

Core@shell catalysts for the direct DME synthesis from synthesis gas have been successfully synthetized. The CZA nanopowder was prepared *via* semi-continuous FSP. Starting from spray dried FSP-CZA as well as from ground pellets the particles could be successfully covered by a zeolite shell. By adjusting the synthesis parameters, the coverage grade of the shell was varied. The reaction tests showed higher X_{CO} in the case of non-dense zeolite shell. Ongoing work focuses on the understanding of the influence of the diffusion for the two cases as well as on comparing the activity for the P-c@s catalyst.

References

- [1] Arcoumanis et al., Fuel, 87 (2008) 1014-1030
- [2] Bae et al., Appl. Catal. B, 217 (2017) 494-552
- [3] Mao et al., Chem. Eng. Res. Des. 111 (2016) 100-108

Acknowledgement: We thank the German Research Foundation (DFG, Grant no. DI 696/9-3 and SCHW 478/23-3) and the "Vector Stiftung" for funding.

Keywords

"single-stage DME synthesis"; "core@shell"; "flame spray pyrolysis"; "spray drying"