

Comparison of O₂ and NO₂ impact on PtO_x and PdO_x formation in diesel oxidation catalysts

Panagiotis Boutikos*, Adéla Buzková Arvajová, Jan Březina, Petr Kočí

University of Chemistry and Technology, Prague, Department of Chemical Engineering, Technická 5, 166 28 Prague, Czech Republic

*Corresponding author: panagiob@vscht.cz

Highlights

- Quantification of O₂ and NO₂ activity in PtO_x and PdO_x formation.
- Comparison of Pt/Al₂O₃ and Pd/Al₂O₃ catalysts.
- Reaction kinetics model for PtO_x and PdO_x formation and their reduction by CO and C₃H₆.
- Impact on NO oxidation activity and NO₂ yield in Diesel oxidation catalyst.

1. Introduction

The catalytic oxidation of NO to NO_2 in a diesel oxidation catalyst (DOC) is a key step in automotive exhaust gas aftertreatment systems, like NO_x storage reduction (NSR), the selective catalytic reduction by NH₃ (SCR) and diesel particulate filters (DPFs) [1, 2]. Hence, it is desirable to control the NO oxidation activity of DOC and maintain it at a proper level.

In several experimental studies [1,2,3,4], deactivation effects during NO oxidation have been reported. This change in catalytic activity can be attributed to the formation of platinum oxides (PtO_x), which are less active for the NO oxidation compared to Pt [1]. The PtO_x formation is induced not only by O₂, but also by NO₂, but no systematic experiments comparing the individual contribution of these two oxidative species have been available. PtO_x decomposes above 400 °C and it can be reduced at low temperatures by NH₃ or NO. Recently, Arvajová et al. reported that it is possible to reactivate the catalyst and increase the NO₂ yield by CO and C₃H₆ pulses, while keeping overall lean composition of exhaust gas that is natural for Diesel engines [4].

The aim of this work is to compare the impact of O_2 and NO_2 on the PtO_x and PdO_x formation during the NO oxidation on Pt/A_2O_3 and Pd/Al_2O_3 diesel oxidation catalysts and to develop the global kinetic model for the above-mentioned processes on both types of the catalysts.

2. Methods

Model diesel oxidation catalysts, Pt/Al_2O_3 and Pd/Al_2O_3 coated on 400 cpsi cordierite monolith, were used for the experimental study. Before each experiment, the catalyst was pretreated in a reductive atmosphere of 2% H_2 in N_2 at 400 °C for 15 min to reduce all Pt or Pd sites to the metallic state. Repeated heat-up and cooldown temperature ramps in the range of 100–400 °C and isothermal deactivation-reactivation experiments at 150, 175 and 200 °C with NO oxidation as probe reaction were carried out in a bench flow reactor with defined mixtures of synthetic gases corresponding to Diesel exhaust and GHSV of 60 000 h⁻¹.

3. Results and discussion

Fig. 1a shows the comparison between the experimental and simulated outlet NO₂ concentration during NO oxidation in subsequent heating and cooling temperature ramps in the case of Pt/Al_2O_3 catalyst. At the beginning, the catalytic surface is fully reduced so that the initial NO oxidation activity during the first heatup ramp is high. Much lower NO₂ concentration is observed during the following cool-down ramp due to the formation of PtO_x species in the catalytic surface. The catalyst activity during the second heat-up is still lower than during the first one, indicating incomplete PtO_x reduction by NO at low temperature. Similar experiments were then performed with a reactivation period, consisting of short lean CO pulses applied at constant temperature (180 °C) during the first cool-down period (Fig. 1b). After the CO pulsation, PtO_x is almost completely reduced and much higher NO₂ yield is observed in both experiment and simulation.

Figure 1. Experimental and simulated NO₂ concentration during NO oxidation subsequent temperature ramps (feed: 250 ppm NO, 8% O₂, 8%CO₂, 8%H₂O) (a) without and (b) with CO pulses (1000 ppm CO).

Figure 2. Isothermal experiment at 200°C with alternated probe periods of NO oxidation and deactivation periods with (a) 8% O₂ and (b) 250 ppm NO₂, followed by CO pulsation. Probe feed: 250 ppm NO, 8% O₂, 7%CO₂, 7%H₂O + 1000 ppm CO pulses.

Fig. 2 shows isothermal PtO_x formation experiments at 200°C. The Pt/Al_2O_3 oxidation can be induced either by O₂ (Fig. 2a) or NO₂ (Fig. 2b). Initially, the catalyst is fully reduced so that during the first probe period of NO oxidation the highest NO₂ production is observed. The first probe period is followed by a deactivation period during which Pt oxidation is induced by O₂ (Fig. 2a) or NO₂ (Fig. 2b). The second probe period of NO oxidation after the deactivation then provides a lower NO₂ yield. The probe and deactivation periods are alternated, revealing gradual decrease of NO₂ yield due to PtO_x formation, until steady state is achieved after 25 000 s (ca. 7 h) of catalyst operation. The PtO_x is partially reduced during the lean CO pulsation at the end of the experiment with the NO₂ yield being near to that of the second probe period. Similar experiments are performed with the Pd/Al₂O₃ catalyst and kinetic parameters are compared for both catalyst types.

4. Conclusions

 NO_2 exhibits a stronger effect on the Pt oxidation than O_2 . However, due to much higher oxygen concentration present in typical exhaust gas mixture, similar overall rate and extent of deactivation is observed for both oxidizing agents. The catalyst activity can be partly restored by CO or C_3H_6 pulses while keeping overall lean conditions. The developed kinetic model can be used for the optimization of NO_2 yield in DOC during driving cycles [5].

References

- [1] L. Olsson, E. Fridell, J. Catal. 210 (2002), 340–353.
- [2] W. Hauptmann, M. Votsmeier, J. Gieshoff, A. Drochner, H. Vogel, Appl. Catal. B: Environ. 93 (2009), 22–29.
- [3] K. Hauff, U. Tuttlies, G. Eigenberger, U. Nieken, Appl. Catal. B: Environ. 123-124 (2012), 107-116.
- [4] A. Arvajová, P. Kočí, V. Schmeißer, M. Weibel, Appl. Catal. B: Environ. 181 (2016), 644–650.
- [5] A. Arvajová, P. Kočí, Chem. Eng. Sci. 158 (2017), 181–187.

Keywords: NO oxidation; reaction kinetics; catalyst reactivation; mathematical modeling.