
 CHEMICAL ENGINEERING TRANSACTIONS  
 

VOL. 86, 2021 

A publication of 

 

The Italian Association 
of Chemical Engineering 
Online at www.cetjournal.it 

Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš 
Copyright © 2021, AIDIC Servizi S.r.l. 

ISBN 978-88-95608-84-6; ISSN 2283-9216 

MODELING A BIOLOGICAL REACTOR USING SPARSE 

IDENTIFICATION METHOD 

Silvia Liscia, Elisa Gitania, Michela Mulasb, Stefania Tronci a,* 

aDipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Cagliari, Italy 
b Department of Teleinformatics Engineering, Federal University of Ceará, Campus of Pici, Fortaleza (Ceará), Brazil 

 *stefania.tronci@dimcm.unica.it.com  

In this work a model-based controller for a fermentation bioreactor has been developed. By simulating the model 

of the process that acts as a virtual plant, input-output data have been generated and used to identify the system 

using sparse identification of nonlinear dynamics methodology. The obtained model is then used in a model-

based algorithm to control the bioreactor temperature, where the manipulated action is obtained as a result of 

a constrained nonlinear optimization problem which minimizes the mismatch between the predicted trajectory 

and the desired one. Good performances have been obtained by applying the proposed control strategy for set-

point changes and disturbance rejection.   

1. Introduction 

Industrial biological processes are considered an important technological asset for the production of 

biochemicals and biofuels. Enormous effort has been made to develop mathematical models for different type 

of biotechnological processes, to be used for design, operation, optimization, scale-up and model-based control. 

However, even if they are widely used, they have not reached the same development as traditional chemical 

processes, particularly when considering automatic control solutions. Although bioreactors are relatively simple 

to operate, the complex network of reactions involved in microorganism growth makes their control very 

challenging (Wang et al., 2018). Even slight changes in the raw materials characteristics or in the process 

operating conditions can act as source that affects the growth of organisms and has an impact on the product 

quality. This issue becomes more demanding when considering the production of bio-chemicals or biofuels 

derived from waste, because the type of feedstock and pre-treatment used to obtain fermentable sugars have 

a strong effect on the fermentation that, then, affects the purification step (Robak and Balcerek, 2020).  

The design of a proper control system can improve the efficiency of the biological system and reduce the effect 

of incoming disturbances. Unfortunately, this is not an easy task due to model uncertainties, nonlinear nature of 

the system and slow response of the process. The complexity of biological processes is mostly due to the 

presence of living organism and their metabolism is sensitive to process conditions, such as temperature, pH, 

substrate concentrations (Spigno and Tronci, 2015; Pachauri et al., 2017). A good description of the input-output 

relationships for the bioreactor is surely one of the main ingredients for designing a proper controller and 

guaranteeing the respect of the desired conditions. The model can be used to derive the control action required 

to minimize (or maximize) an objective function, with the possibility to include some known operating constraints 

in the optimization objective. Caution must be taken when developing the bioreactor model, because using an 

inaccurate model could lead to either bad performance or an unstable closed-loop system (Cogoni et al., 2014). 

On the other hand, first-principles model can be difficult to obtain, particularly for bioreactors, where it is very 

difficult to understand and describe all the phenomena which occur. Data-driven identification can be a possible 

solution (Armenise et al., 2018; Taris et al., 2017), but algorithm such as neural networks may require a large 

amount of data and, for complex systems, they may have a large number of parameters (weights). Brunton et 

al. (2016) proposed a solution for system identification based on sparse identification of nonlinear dynamics 

which looks for the main function describing the dynamics of the observed states. The procedure was 



successfully applied to different dynamical systems, considering measurement noise and partial observation of 

the states.  

The main objective of the present work is to design a model-based controller for a fermentation bioreactor, used 

as case study, exploiting the sparse identification approach. The bioreactor model was proposed by Nagy (2007) 

and involves detailed kinetic model and equations, which express the heat transfer, the dependence of kinetic 

parameters on temperature, the mass transfer of oxygen, as well as the influence of temperature and ionic 

strength on the mass transfer coefficient. By simulating the model of the process (virtual plant), input-output 

data have been generated and used to identify the system using sparse identification of nonlinear dynamics 

methodology (Brunton et al., 2016; Kaiser et al., 2018). A subset of states is considered measured, as it usually 

occurs in real plant. The study is aimed at obtaining a simple and parsimonious model that can be successfully 

applied to a nonlinear optimal control algorithm.  

2. Fermentation reactor model 

A virtual plant (Nagy, 2007) is here used to address the problem of developing a nonlinear model predictive 

control for a bioreactor.  

 

 
Figure 1. The continuous fermentation bioreactor  

 

The system consists of six states, which are biomass concentration (𝐶𝑋), ethanol concentration (𝐶𝑃), substrate 

concentration (𝐶𝑆), dissolved oxygen concentration (𝐶𝑂2
), reactor temperature (𝑇𝑟), and jacket temperature (𝑇𝑎𝑔), 

as reported in Eqs. (1-6). The reactant volume is constant.  
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where 𝐶𝑆,𝑖𝑛 is glucose concentration in the feed flow; 𝐹𝑖  is the flow entering the bioreactor; 𝐹𝑒 is the outlet 

flow; 𝐹𝑎𝑔 is the flow of the coolant agent; 𝐾𝑖 is the constant: for oxygen consumption (𝑖 = 𝑂2), of growth inhibition 

by ethanol (𝑖 = 𝑃), of fermentation inhibition by ethanol (𝑖 = 𝑃1), in the substrate term for growth (𝑖 = 𝑆), and in 



the substrate term for ethanol production (𝑖 = 𝑆1);  𝜇𝑖 is the maximum specific rate for: oxygen consumption 

(𝑖 = 𝑂2), fermentation (𝑖 = 𝑃), growth rate (𝑖 = 𝑋);  𝑅𝑆𝑃 (𝑅𝑆𝑋) is the ratio of ethanol produced per glucose 

consumed by fermentation (ratio of cell produced per glucose consumed for growth); 𝑌𝑂2
 is the yield factor for 

biomass on oxygen;  𝐾𝑇 is the heat transfer coefficient; 𝐴𝑇  is the heat transfer area; 𝑘𝑙𝑎 is the product between 

mass-transfer coefficient and the specific area; 𝐶𝑂2

∗  is the equilibrium concentration of oxygen in the liquid phase; 

𝑉 is the volume of the mass of reaction; 𝑉𝑙 is the volume of the jacket; 𝐶ℎ𝑒𝑎𝑡,𝑟  (𝐶ℎ𝑒𝑎𝑡,𝑎𝑔) is the heat capacity of 

the mass of the reaction (heat capacity of the cooling agent); 𝜌𝑟  (𝜌𝑎𝑔) is the reaction mass density (cooling agent 

density). Other details on the model and parameters value can be found in Nagy (2007). Table 1 reports nominal 

conditions for the fermentation system. 

Table 1: Input values at the nominal conditions  

Inputs  𝐹𝑖 [L/h] 𝐹𝑎𝑔[L/h] 𝑇𝑖𝑛,𝑎𝑔[oC] 𝐶𝑆,𝑖𝑛[g/L] 

 51 18 15 60 

3. Model identification  

A data-driven approach has been used to identify the model from the available outputs and inputs. The algorithm 

used in this work is that proposed by Brunton et al. (2016), which determines the governing equations of the 

bioreactor by sparse identification of nonlinear dynamical systems. To obtain the model, the available n states 

and l manipulated inputs have been collected, obtaining a time series of length 𝑚 for each measure. The data 

sampled can be rearranged in matrixes, as reported in Eq. (8). 
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Defining the augmented vector 𝐳 = [𝐱, 𝐮], the matrix of the collected data is reported in Eq. (9) 
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A set of candidate functions needs to be selected for describing the dynamics of the observed states (10). In 

this work, only quadratic functions (9) have been considered, aiming at a simple model.  
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The term Z𝑃2  represents the quadratic terms of the model, as represented in Eq. (11). 
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The reconstructed dynamics has the following form (12) 

𝑑𝑿

𝑑𝑡
=  Θ(𝐗, 𝐔)Ξ  (12) 

Each column of the matrix Ξ is a sparse vector of coefficients determining which terms are active in the right-

hand side of Eq. (12). The sparse solution has been calculated by means of the sequential threshold algorithm 

(Brunton et al., 2016), that starts with the least-square solution for Ξ and threshold all coefficients that are smaller 

than the given cutoff value (). Then, another least-square solution for Ξ is obtained using the functions that 

have not been eliminated in the previous step. The new coefficients are again threshold until convergence. To 

obtain data set for identification, the model (1-6) has been excited by appropriate input signals. The quality of 

identification depends on the quality of the data used to obtain the model, that means that data should contain 

enough information of the state dynamics.  



4. Control algorithm 

The identified model was introduced in a model predictive control scheme as the internal model used for 

prediction during the control movement calculation. In each sampling period, the current temperature 

measurement is obtained by the virtual plant, and the control action is calculated by solving the optimization 

problem (13) (Ogunnaike and Ray, 1994): 

min
𝐹𝑎𝑔(𝑘)

∑ [(𝑇𝑠𝑝(𝑘 + 𝑖) − �̂�𝑟(𝑘 + 𝑖)) − (𝑇𝑟
𝑚(𝑘) − �̂�𝑟(𝑘))]

2
+ 𝛽(𝐹𝑎𝑔(𝑘 − 1) − 𝐹𝑎𝑔(𝑘))

2𝑛𝑝

𝑖=1   (13) 

where �̂�𝒓(𝒌 + 𝒊) is calculated by the identified model, 𝑻𝒓
𝒎(𝒌) is the measured temperature, 𝑻𝒔𝒑 is the set-point 

trajectory, 𝑭𝒂𝒈(𝒌) is the coolant flow rate (manipulated input) and 𝜷 is a positive parameter, used to penalize 

the deviation of the manipulated inputs in order to avoid aggressive control action.  

5. Results  

5.1 Model identification 

Only four states have been considered observable (𝐶𝑆, 𝐶𝑂2
, 𝑇𝑟 , 𝑇𝑎𝑔) and only one manipulated variable (𝐹𝑎𝑔), 

therefore 𝑛 = 4 and 𝑙 = 1  in Eq. (8).  The derivatives of the states in (12) have been numerically obtained using 

fourth-order approximation. Different input sequences have been used to excite the system, and the best results 

in terms of reconstruction capability and robustness have been obtained with the pseudo-random binary 

sequence (PRBS) shown in Figure 2. Data have been sampled every 0.025 h and the following cutoff values 

have been used to individuate the best prediction capabilities 

𝜆 = [𝜆𝐶𝑆,, 𝜆𝐶𝑂2
, 𝜆𝑇𝑟

, 𝜆𝑇𝑎𝑔
] = [0.1,0.2,0.3,0.5] . (14) 

 

 

 Figure 2. PRBS signal used to excite the bioreactor.  

The comparison between the states calculated by integrating the model (1-6) and the ones predicted with the 

identification procedure described in Section (3) are reported in Figure 3, for the validation set. The identified 

model shows good prediction capability, as shown by the fact that prediction and virtual plant curves are nearly 

superimposed.  

5.2 Control  

The nonlinear predictive control has been implemented using the bioreactor model in (1-6) as virtual plant. The 

constrained optimization problem was solved using a gradient-based method, where the minimum flow rate 

value was set equal 0, and the maximum one was set equal to 200, according to Nagy (2007). The sample time 

of the controller is 3 minutes. It is important to note that the reactor is controllable, therefore it is in principle 

possible to obtain the required product composition with the proper control action. Temperature set-point can 

be therefore selected such that the required ethanol production is obtained. 

 



  

  

Figure 3. Comparison between prediction (dashed red line) and actual values (black continuous line) of 

substrate concentration (upper panel, left), oxygen concentration (upper panel, right), reactor temperature 

(bottom panel, left), cooling agent temperature (bottom panel, right).  

Control performance has been evaluated in terms of set-point tracking using the same temperature set-point 

variations proposed in Nagy (2007), who developed a neural network nonlinear temperature controller for the 

bioreactor. The comparison shows that the simple identification algorithm and the parsimonious model used in 

the present work leads to satisfactory results (Figure 4), being the controller able to efficiently track the system 

to the set-point.  

 

  

Figure 4. Proposed controller performance for set-point changes. Controlled reactor temperature (left panel, 

continuous line), temperature set-point (left, dashed line) and manipulated variable (right panel).   

The controller has been also evaluated in presence of disturbance variations, obtained by varying the input 

temperature of the cooling agent (Figure 5, right panel, right y-axis). Observing the left panel of Figure 5, it is 

possible to notice that the deviation of reactor temperature from the set-point at 30oC is very small, thanks to 

the optimal trajectory obtained for the manipulated variable as reported in the right panel of Figure 5 (left y-axis).   
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Figure 5. Proposed controller performance for disturbance rejection. Controlled reactor temperature (left panel, 

continuous line), temperature set-point (left panel, dashed line). Manipulated variable (right panel, continuous 

line, left y-axes) and inlet coolant agent temperature (right panel, dashed line, right y-axes).   

6. Conclusions 

One of the most demanding issue when considering the development of advanced control systems in 

bioreactors is the obtainment of an accurate input-output model. This is because of the complex phenomena 

occurring in the biosystem and the lack of adequate monitoring tools. This problem has been here addressed 

by exploiting the sparse identification of nonlinear dynamics algorithm, that has been used to identify the 

nonlinear model of a bioreactor for ethanol production by fermentation of glucose. The aim was to obtain a 

parsimonious model with a limited number of measured states, that could be used to develop a model-based 

control, where the manipulated variable action was calculated by solving a nonlinear optimization problem. The 

identified model was able to give a good reconstruction of the observed states that led to the obtainment of good 

performance of the optimal model-based controller. Some issues need to be addressed in the future, as the 

introduction of measurement noise and development of a MIMO optimal controller to guarantee the product 

quality even in presence of disturbances that can affect the conversion (e.g., variation of pH, presence of 

contaminants in the reactor feed, variation of inlet substrate concentration).  
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