
 CHEMICAL ENGINEERING TRANSACTIONS  
 

VOL. 86, 2021 

A publication of 

 

The Italian Association 
of Chemical Engineering 
Online at www.cetjournal.it 

Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš 
Copyright © 2021, AIDIC Servizi S.r.l. 

ISBN 978-88-95608-84-6; ISSN 2283-9216 

Assessment of CO2 Storage as Hydrates in Saline Aquifers 

using Machine Learning Algorithms 

Vladislav De-Galda, b, Nejat Rahmanianb*, Denis Batrshinc 

aSchool of Computer Science & Robotics, Division of Information Technology, Tomsk Polytechnic University, Tomsk, Russia 
bChemical  Engineering Department, Faculty of Engineering and Informatics, University of Bradford, BD7 1DP, UK 
сJSC All-Russian Scientific-Research Oil&Gas Institute named after acad. A.P. Krylov, 105005, Moscow, Russia 

corresponding.author: n.rahmanian@bradford.ac.uk  

Global warming is one of the most serious issues the world is currently facing. The major reason is attributed to 

emission of greenhouse gases and in particular carbon dioxide, CO2. The most promising methods that could 

allow significant reduction in CO2 emissions are capture and geological storage of CO2. One major concern 

against storage of CO2 is the possibility of its leakage. One process that could lead to more reliable trapping of 

CO2 is hydrate formation – that leads to trapping of CO2 in the solid form. In this study, Machine Learning 

algorithms and reservoir simulation software were used to conduct sensitivity studies on some of the main 

reservoir parameters, to understand which characteristics have most impact on stability of CO2 storage in the 

form of hydrates. The hydrate formation curve calculated by HydraFlash software was considered to be a 

benchmark for experiments conducted in this study. 

1. Introduction 

Carbon dioxide (CO2) is a chief constituent of greenhouse gases and should be captured, transported and stored 

in saline aquifers or used for enhanced oil recovery (Peletiri et al., 2017). The safety assessment is a key aspect 

that should be assessed in the planning and operational step of any CO2 transportation system (Mocellin et al., 

2019), however, this issue is not in the scope of this article. One of the possible trapping mechanisms for CO2 

is hydrate formation. Gas hydrates are crystalline compounds of gases and water of a variable composition, 

having similar physical properties to ice. Gas hydrates are formed upon the contact of gas and water under 

certain thermobaric conditions (Malakhova, 2020). They usually exist in marine bottom sediments and in areas 

of permafrost. Hydrate is a highly condensed form of gas bound with water; one cubic meter of hydrate 

corresponds to approximately 160 cubic meters of gas at atmospheric conditions. The zone where gas hydrates 

can form is referred to as the gas hydrate stability zone (GHSz). In the marine environment, the GHSz is located 

between the sea floor and the base of the stability zone defined by the phase diagram. The limits of the stability 

zone are determined by bottom water temperature, sea level, geothermal gradient, gas composition and pore 

water salinity. Storage of CO2 as hydrates below the sea floor is a possible trapping mechanism but has not 

been widely considered. This is because the long-term behavior of such hydrates in shallow sediments is not 

well known (NPD, 2019). 

2. Current study 

In this study, CO2 storage as hydrates in Saline Aquifers is modelled by STARS software (CMG STARS, 2016). 

The phase behavior of CO2 hydrate and a kinetic model is incorporated in the thermal reservoir simulator. 

Norwegian Petroleum Directorate proposes possible locations for CO2 storage; one of the possible options for 

CO2 storage as hydrates is below the Barents seabed (CO2 Storage Atlas Barents Sea, NPD). Barents Sea 

depth reaches 500 meters, which in combination with low bottom water temperatures that can be as low as 

0 ℃, provides necessary conditions for CO2 Hydrate formations, which is presented in Figure 1b. Taking into 

account Hydrate Formation Curve of CO2 in Figure 1b, calculated by HydraFlash software (Hydraflash, 2020) 



and Hydrate Formation Zone thickness dependent on ocean depth in Figure 1a (Qanbari et al., 2011), seas with 

depths 500 – 1600 meters and bottom water temperature of 1 ℃ are considered in this study. 

Figure 1a: Thickness of HFZ and NBZ (Negative Buoyancy Zone), 1b: Hydrate Formation Curve calculated by 

HydraFlash 

3. Simulation model 

A reservoir model is developed to simulate fluid flow, heat transfer, formation and decomposition reactions. 

Water, gaseous CO2 and solid CO2 hydrate are included in the model. Main reservoir properties and injection 

conditions are presented in Table 1. 

Table 1: Reservoir properties and injection conditions 

Property Value 

Reservoir dimensions (L × W × T), m 500 · 100 · 300 

Porosity 0.2 

Permeability I, J, K, mD 20 

Sea Depth, m 1000 

Grid Top below seabed, m 0 

Number of grids (L × W × T) 50 · 1 · 30 

Top layer pressure, kPa 10000 

Top layer temperature, ℃ 1 

Geothermal gradient, ℃ / 100 m 3 

Aquifer modeling method Carter-Tracy (infinite extent) 

Volumetric Heat Capacity, J / (m3 · ℃) 8.0E+5 

Thermal Conductivity, J / (m · day · ℃) 1.50E+05 

CO2 injection rate, m3 / day 5000 

Injection time, years 1 

Simulation time, years 10 

Water Saturation 1.0 

Vertical Calculation Equilibrium Method Depth-Average Capillary-Gravity Method 



 

The simulations assume an isotropic and homogenous infinite aquifer. Figure 2 shows the reservoir model used 

in experiments. 

Figure 2: Reservoir simulation model 

CO2 hydrate forms as a result of reaction between water in the aqueous phase and the CO2 in the gaseous 

phase Eq(1) and decomposes as shown in Eq(2). The properties of the pure components are obtained using 

NIST Standard Reference Database Number 69. 

7.7𝐻2𝑂 + 𝐶𝑂2 = 𝐶𝑂2(𝐻𝑦𝑑) (1) 

𝐻2𝑂+ 𝐶𝑂2(𝐻𝑦𝑑) = 8.7𝐻2𝑂+ 𝐶𝑂2 (2) 

4. Machine learning methods for sensitivity analysis 

Machine learning (ML) – a class of artificial intelligence methods whose characteristic feature is not the direct 

solution of a problem but training in the process of applying solutions to many similar problems.  
Machine Learning is widely applied to the problems of petroleum industry. 

Sobol Analysis and Effect Estimates are applied in this study since they show high results in quantifying the 

relative importance of input factors as well as their interactions. 

4.1 Sobol Analysis using RBF Neural Network 

The Sobol method is a form of global sensitivity analysis. Working within a probabilistic framework, it 

decomposes the variance of the output of the model into fractions which can be attributed to inputs. For example, 

given a model with two inputs and one output, 50% of the output variance may be caused by variance of the 

first input, 35% by the variance of the second, and 15% due to interactions between the two. These percentages 

are directly interpreted as measures of sensitivity. In this study, Radial Basis Function Neural Network is used 

as a model.  

Radial Basis Function (RBF) network in its simplest form is a three-layer feedforward neural network. The first 

layer corresponds to the inputs of the network, the second is a hidden layer consisting of a number of RBF non-

linear activation units, and the last one corresponds to the final output of the network. Activation functions in 

RBFNs are conventionally implemented as Gaussian functions (Faris et al., 2017). 

4.2 Effect Estimates using Polynomial Regression 

Effect estimates show the correlation between the change of parameters and the output. In case of a single 

parameter, the effect estimate is called the main effect. In order to determine the influence of each parameter, 

a linear model is used as a proxy model. The greater the model parameter is, the more important it is. All 

parameters are scaled to an interval from -1 to 1 since effect estimates are highly dependent on the parameter 

scale. Quadratic model effect estimates are also specified in the same scale-invariant way. Polynomial 

Regression model is implemented in this case since polynomial regression models have been widely used for 

the analysis of physical and computer experiments due to their ease of understanding, flexibility, and 

computational efficiency. 



5. Results and discussion 

A number of simulations using CMG CMOST were conducted to understand factors that affect hydrate formation 

over 10 years. Table 2 shows the list of experiment cases where the effects of Porosity, Permeability, Sea 

Depth, Thermal Conductivity and Heat Capacity are investigated. 

Table 2: Case List 

Parameter Discrete values 

Porosity, % 1 – 51 (step 12.5) 

Permeability I, J, K, mD 10-2010 (step 500) 

Top layer pressure (Reference Pressure), kPa 5000-17000 (step 3000) 

Thermal Conductivity, J / (m · day · ℃) 1.5E+5, 3.2E+5, 6.0E+5 

Volumetric Heat Capacity, J / (m3 · ℃) 8.0E+5, 2.0E+6, 3.5E+6 

Injection temperature 1-21 (step 5) 

Total number of successful experiments 3426 

 

Figure 3a and Figure 3b demonstrate the effect of aforementioned parameters on CO2 Hydrate and CO2 amount 

of substance change over a period of 10 years. In the next chapter the detailed analysis of each parameter is 

provided. 

 

Figure 3a: Amount of CO2 Hydrate throughout simulation time, 3b: Amount of CO2 Hydrate throughout simulation 

time 

5.1 Porosity 

The tornado plot in Figure 4a shows that the linear effect estimate for Porosity (0.1, 0.51) is -18.71 %. This 

means that if Porosity increases from 0.1 to 0.51, the expected hydrate amount fraction formed by the end of 

injection period of the total hydrate amount is decreased by 18.71%. Analysing Figure 4b, porosity is clearly the 

major contributor to the speed of hydrate formation. Based on the results, 40% of the output variance, on 

average, can be changed if porosity is changed. The fact that low-porosity cases are associated with more 

sensible heat per unit volume, enabling the formation of more hydrate before it rises to its equilibrium 

temperature (Zatsepina, Pooladi-Darvish, 2012), can explain the decrease in hydrate formation speed observed 

in aforementioned plots. On the other hand, analysing Figure 5a and Figure 5b, there is an opposite effect of 

Porosity on CO2 amount fraction by the end of hydrate formation. Porosity in this case remains the main 

contributor to the variance of the function but increasing porosity from 0.1 to 0.51 shows expected increase of 

residual CO2 amount, by the end of hydrate formation by 17.64%, which is a negative result in this study since 

CO2 storage is simulated in form of hydrates. 

5.2 Injection Temperature 

Figure 4b and Figure 5b shows that injection temperature has almost no effect on hydrate formation rate as well 

as on CO2 fraction by the end of Hydrate Formation. Even though lower temperatures promote hydrate formation 
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rate, injection temperature in the range between 1 and 21 °C had little impact on hydrate formation. In this 

context, it is important to keep in mind the substantial difference in Heat Capacity between water and CO2, as 

well as the rock Heat Capacity that will also buffer out some temperature difference between initial temperature 

in the reservoir, and the temperature of the incoming CO2. 

5.3 Thermal Conductivity 

The effects of the Thermal Conductivity were investigated by changing a value from 1.5E+5 J/(m · day · ℃) in 

the base case to 3.2E+5 J/(m · day · ℃) and 6E+5 J/(m · day · ℃), which is the range where Thermal Conductivity 

of different rocks typically falls (Labus, Labus, 2018). The higher values of Thermal Conductivity cause higher 

rates of Heat Flow and, consequently, higher rates of Hydrate Formation (Zatsepina, Pooladi-Darvish, 2011), 

that can be seen on Figure 4a. The increase of Thermal Conductivity from 1.5E+5 J/(m · day · ℃) to 6E+5      

J/(m · day · ℃) leads to a 3.625% increase in hydrate fraction by the end of injection. On the contrary, the same 

increase in Thermal Conductivity shows negative effect on residual CO2 fraction by the end of hydrate formation. 

5.4 Heat Capacity 

The effect of Heat Capacity is similar to Thermal Conductivity. It influences the hydrate percentage by the end 

of injection and CO2 percentage by the end of hydrate formation in the same way as Thermal Conductivity with 

the only difference, Heat Capacity has much bigger impact than Rock Conductivity. By increasing Heat Capacity 

from 8.0E+5 J/(m3 · ℃) to 3.5E+6 J/(m3 · ℃), the hydrate amount percentage is increased by 8.991% as shown 

on Figure 4a. It can be explained by the fact that during hydrate formation the generated heat needs to be 

buffered out and rocks with greater heat capacities are much better candidates for it. 

5.5 Permeability 

Figure 4a shows linear effect of Permeability as well as quadratic effect. By increasing Permeability from 10 to 

2010 mD, the expected decrease of hydrate fraction by the end of injection is 6.474 %. On the other hand, 

quadratic effect shows increase by 8.363 %. This phenomenon may be explained by hydrate formation being 

an exothermic reaction, and that heat needs to be transported away from the formed hydrate for further growth 

to occur. Thus, when Permeability reaches a certain value, hydrate formation may be fast enough to form such 

large amounts of hydrate. The lack of heat transport by porous media results in overall reduction of hydrate 

growth (Qorbani et al., 2016), or if Porous Media handles the heat income produced by hydrate formation, then 

positive effect of Permeability on hydrate formation can be seen. On the other hand, increasing Permeability 

from 10 to 2010 mD increases CO2 fraction by the end of hydrate formation by 6.027%, which is unfortunate for 

CO2 storage as hydrates. 

5.6 Reference Pressure (Pressure of Sea Bottom) 

Figure 4a and Figure 5a show that by increasing Reference Pressure from 5000 to 17000 kPa, which roughly 

corresponds to sea depths of 500 meters and 1700 meters respectively, percentage of hydrate formed by the 

end of the injection is increased by 10.64% and percentage of CO2 remained by the end of injection decreased 

by 9.386%. At higher pressures, two factors promote hydrate formation and growth. The first is the solubility of 

CO2 which increases with increasing pressure. Moreover, at high pressures, CO2 prefers to remain within the 

hydrate structure compared to lower pressures, thus lowering hydrate dissociation rates. 

Figure 4a: Effect Estimates of CO2 Hydrates fraction by the end of injection using Polynomial Regression,  

4b: Sobol Analysis of CO2 Hydrate fraction by the end of Hydrate formation using RBF Neural Network 
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Figure 5a: Effect Estimates of CO2 fraction by the end of injection using Polynomial Regression,    

5b: Sobol Analysis of CO2 fraction by the end of Hydrate formation using RBF Neural Network 

6. Conclusions 

The challenge of CO2 storage as hydrates in Saline Aquifers was investigated. It was found that the rate of 

hydrate formation varied linearly or quadratically with respect to Porosity, Permeability, Volumetric Heat 

Capacity, Reference Pressure (Sea Depth), Rock Thermal Conductivity, as well as Injection Temperature, within 

the studied ranges. Permeability had a moderate effect on hydrate formation, Injection Temperature, and Rock 

Conductivity showed almost no effect within the investigated range. However, the hydrate formation rate was 

significantly more sensitive to changes in Porosity, Reference Pressure, Heat Capacity. 

To sum up, our results indicate the possibility of long-term storage of CO2 in Saline Aquifers, although it depends 

on the reservoir characteristics. However, the results show that hydrate formation rate is strongly dependent on 

several parameters of the reservoir, which should be thoroughly considered before deciding on possible CO2 

storage locations in the form of hydrates. 
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