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New technologies for air quality measurement, including real-time on-road air quality monitoring systems 
(ROMs), have improved the spatial resolution of data. However, measured data can miss due to restricted traffic 
zones. Different algorithms can estimate the missing data in these points, using available measured data in the 
neighbourhood. In this study, the results of the applications of an interpolation method taking into account the 
effect of wind direction and intensity by means of a simple dispersion model is presented. Thanks to the large 
amount of data provided by the innovative dynamic monitoring system (ROM), the proposed model is able to 
return, with a good approximation, reliable PM10 and PM2.5 concentration values, with a resolution of 1 km2. 

1. Introduction 

In recent years air quality data are used to investigate the relationship between air pollution and human health 

to quantify the effect of exposure to pollutants (Donaire-Gonzalez et al., 2019). With this regard, the European 

Union reported daily and annual limit concentrations for some of the major pollutants in the Directive 2008/50/ 

EC to support decarbonisation (Sofia et al., 2020a). Therefore, it is necessary to create accurate monitoring 

networks, which can measure and record time series of major pollutant concentrations (Sofia et al., 2018). 

Analysis of these data allows the pollution forecast (Lotrecchiano et al., 2019) and investigating the effect of 

pollution sources by means of dispersion models at steady state (Sofia et al., 2020b) and over the time 

depending on the weather conditions and emission factors (Lotrecchiano et al., 2020). The accuracy of models 

depends on many factors, including the spatial and time resolution of the source data, the quality of the 

meteorological data in the area, the assumptions about the physical and chemical processes in the atmosphere 

involving the transport and conversion of pollutants (Sofia et al., 2020c).  

Recently, cheaper smart measurement devices (Sofia et al., 2019) allow the measurement of pollutant 

concentrations with higher spatial-temporal resolution. Moreover, the design and implementation of portable 

measuring devices, like the real-time on-road monitoring stations (ROMs) (Lotrecchiano et al., 2019), allows 

collecting a huge amount of data with a much higher spatial resolution. However, a lack of data may occur in 

areas inaccessible to vehicles, such as traffic-restricted zones or city parks. Spatial interpolation methods based 

on either a deterministic or stochastic approach can be used to estimate missing data. In addition to simple 

linear interpolation, kriging is one of the most used statistical methods for physical data depending on 

atmospheric dispersion in Geostatistics, the science studying the natural phenomena that develop on the 

territory. In particular, kriging is a spatial interpolation method combining an atmospheric dispersion model and 

a pollutant emissions inventory to interpolate the model outputs (Beauchamp et al., 2018). Differently, Inverse 

Distance Weighting (IDW) calculates missing concentration data based on the weighted sum of the neighbouring 

observations considering the inverse of the distance. In general, deterministic methods do not take into account 

the variability in the spatial domain of the parameter to be interpolated and their implementation is arbitrary. 
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Furthermore, the results are extremely dependent on the spatial configuration of the input data and on the 

sampling schemes. The measures provided by the monitoring systems in general are sparse and must be 

expanded in space through the implementation of a model to have clear information on the environmental 

situation. 

In this work air quality data measured by ROMs over a very large area, the city of Milan, are elaborated to find 

a suitable interpolation procedure to calculate pollutant concentrations in positions where measurement data 

are not available. It is expected that the availability of a large amount of data distributed on the ground could 

allow to obtain significant interpolation results using fairly simple approach to pollution data. 

2. Materials and methods 

Data 

The air quality data used in the present work were measured by the ROMs network installed in Milan (Italy). 

This type of technology is patented and properly designed to be located on moving vehicle. The network consists 

of 53 measuring devices located on courier vans. Each device provides measurements of the main aero-

dispersed pollutant concentration such as particulate matter of different sizes PM1, PM2.5, PM10, and gases 

as H2S, CO, O3, NO2, SO2 and, VOC. In addition to the air quality measurements, meteorological data as 

temperature, pressure and relative humidity are acquired as well. Wind intensity and direction data are obtained 

from an external meteorological station using an application programming interface key (API key). The ROMs 

data are protected and unchangeable due to the implementation of a blockchain system that guarantee the data 

integrity (Sofia et al., 2020d). The area covered by the moving measuring stations is about 306 km2 and 

corresponds to the whole metropolitan area of the city of Milan. In this work only the PM10 and PM2.5 

concentration data are used. The measuring device provides latitude and longitude coordinates via GPS. The 

data acquired every 3 minutes are aggregated on a daily base and with a spatial resolution of 1 km2. Data are 

reported on a grid of 1 km2 square cell and the data acquired in January and February 2020 were used in this 

work.  

 

 

Figure 1. Comparison between PM10 daily concentrations measured by the ROMs and the ARPALombardia air 

quality network in a) Verziere and b) Senato in Milan on January 2020. 

The ROMs data was compared with the measured one provided by the ARPA Lombardia air quality network, 

which provides pollution data collected according to the Italian Legislative Decree 155/2010. In Figure 1 it is 

clear that the two measuring technologies (laser scattering and gravimetry) provides data fairly well comparable.  

Methodology 

Raw concentration data, c, are transformed into deviation with respect to an assumed background value, cbg, 

corresponding to the minimum concentration value recorded in the whole grid. Therefore, the interpolation 

procedure processes the deviation values C=(c−cbg). In order to estimate missing concentration data, each cell, 

where measured data is available, can be considered that pollution data in neighboring cells are interdependent 

and that the interdependence decreases with the distance but is stronger in the wind direction as it may happen 



if each point is considered as a pollutant emission source. This could be more detailed, if it could be possible to 

identify the specific intensity of emission source in each area. However, in an urban area with roads, houses 

and other activities as a source of particulate emissions an assumption of a fairly uniform emission on the ground 

is a good approximation of the real situation. In the following the procedure adopted to evaluate the mutual cell 

interdependence. Each measured data in a cell is considered the starting point of the spatial expansion of locally 

produced pollutants and provides its contribution to an expansion matrix. After the application of the expansion 

model to all cell with a measured value, the obtained matrices are combined to obtain a final matrix. The latter 

is given by linear combination of all the estimated matrices with a weight proportional to the distance from the 

emission source cell. The spatial expansion takes into account the wind intensity and direction to model the 

pollutant dispersion phenomenology. The approach used in this study assumes a pollutant dispersion field such 

that each emission source could generate iso-concentration elliptical lines, with the source cell centre located 

in one of the focal points. The concentration in the points of each ellipse is equal to the measured concentration 

in the source cell multiplied by a decay factor depending on the ellipse size. It is assumed that the main axis of 

each ellipse is placed along the wind direction and the ratio between the ellipse axes is a function of the wind 

speed. Accordingly, the axes have been defined by the following equations (Eq.1): 

{
𝑎2 + 𝑏2 = 2𝑟2

𝑎2 = 𝑏2 + 𝛾r2𝑣2    (1) 

where 𝑎 is the semi-major axis, 𝑏 is the semi-minor axis, 𝑣 is the normalized wind speed, 𝑟 is the distance at 

which a given concentration decay coefficient is obtained in the absence of wind. 

The estimated concentration in each cell in (i, j) position, 𝐶𝐸𝑖,𝑗, is a linear combination of the concentrations of 

the neighbouring source cells, 𝐶𝑘,𝑙, properly weighted by means of factors corresponding to the source cells 

ellipses, passing through the (i, j) cell itself. In particular, the considered source cells are the closest eight on 

the grid placed around the (k, l) cell. The resulting concentration is given by the Eqs. (3) and (4): 

𝐶𝐸𝑖,𝑗 = ∑ ∑ 𝐶𝑘,𝑙𝑤𝑘,𝑙𝑙=𝑗−1,𝑗+1
𝑙≠𝑗

 

𝑘=𝑖−1,i+1
𝑘≠𝑖 

    (2) 

𝑤𝑘,𝑙 =
𝛼𝑘,𝑙

∑ ∑ 𝛼𝑘,𝑙𝑙=𝑗−1,𝑗+1
𝑙≠𝑗

 

𝑘=𝑖−1,i+1
𝑘≠𝑖 

⇒ ∑ ∑ 𝑤𝑘,𝑙𝑙=𝑗−1,𝑗+1
𝑙≠𝑗

 

𝑘=𝑖−1,i+1
𝑘≠𝑖 

= 1   (3) 

where 𝑤𝑘,𝑙 is the weighing factor of the concentration contribution for the neighbouring cell in the (k, l) position 

and 𝛼𝑘,𝑙 is the corresponding decay coefficient. The decay coefficient was evaluated in two alternative ways. In 

the first case, 𝛼𝑘,𝑙 decreases linearly with the size 𝑟𝑘,𝑙 of the ellipse, having a focus in the point in the (k, l) 

position  and passing through the point in the (i, j) position, and defined by Eq (4): 

𝛼𝑘,𝑙 = 1 − 𝑟𝑘,𝑙𝑑𝑐    (4) 

where 𝑑𝑐.is a decay constant with  𝑑𝑐=0.05. In the second case, 𝛼𝑘,𝑙 is evaluated by an exponential decay 

function with 𝑑𝑐=1.57: 

𝛼𝑘,𝑙 = exp (−𝑟𝑘,𝑙𝑑𝑐)    (5) 

The parameter γ appearing in Eq. (1) is obtained by minimizing the deviation function, f, obtained as the sum of 

the squares of the residuals between the estimated concentration 𝐶𝐸𝑖,𝑗 and the measured concentration 𝐶𝑖,𝑗, for 

the neighbouring cells where measured data are available: 

𝑓 = ∑ ∑ √(𝐶𝐸𝑙,𝑗 − 𝐶𝑘,𝑙)2
𝑙𝑘    (6) 

To evaluate the performance of the complete model, the normalized root mean square error between the 

measured values and the corresponding values estimated with the model was calculated as follows: 

𝑁𝑅𝑀𝑆𝐸 = √1

𝑁
∑ ∑ (

𝐶𝐸𝑙,𝑗−𝐶𝑘,𝑙

𝐶𝑘,𝑙
)

2

𝑙𝑘    (7)  

where N is the number of the values estimated. 

3. Results 

Preliminary calculations aimed at evaluating the optimal parameters and equations of the spatial dispersion 

model. Figure 2b shows that the f function, defined by Eq. (6), is weakly dependent on the parameter γ, probably 

due to the normalization of Eq. (3). Nevertheless, a minimum value can be observed and, thus, an optimal value 



for γ was set to 1.5. The parity plot of Figure 2a compares the concentration values, estimated by Eq. (2), using 

for the decay coefficient 𝛼𝑘,𝑙 Eq. (4) or Eq. (5), respectively. Inspection of the figure reveals that there is not a 

significant difference between the estimated values. As a result, the exponential decay function of Eq. (5) was 

adopted for the rest of the study since it yields intrinsically 𝛼𝑘,𝑙 values between 0 and 1. 

 

 

Figure 2. 2a) Comparison between CE concentration values estimated by Eq.(2): CE (1) with 𝛼𝑘,𝑙 according to 

Eq.(4), CE (2) with 𝛼𝑘,𝑙 according to Eq.(5). 2b) Minimization of f as a function of parameter γ. 

The grid (x, y) covering the investigated area of Figure 1, also reported in Figure 3, was rotated by an angle β 

corresponding to the wind direction. Figure 4 reports the eight ellipses with constant decay coefficient values, 

calculated according to Eq. (5), passing through a selected (i, j) point, to estimate 𝐶𝐸𝑖,𝑗 as a function of the 

measured concentration in the eight neighbouring cells. Inspection of the four panes, corresponding to different 

normalized wind intensity values, suggests that the higher is 𝑣 , the longer is the ellipse major axis and the more 

effective is the pollutant dispersion. This scenario corresponds to lower 𝛼𝑘,𝑙 values for the source cells located 

downwind with respect to the (i, j) point and to higher 𝛼𝑘,𝑙 values for the source cells located upwind. As a result, 

the concentration 𝐶𝐸𝑖,𝑗 is affected by the concentration of the neighbouring cells with different weights. On the 

contrary, the lower is 𝑣, the shorter is the ellipse major axis and the less effective is the pollutant dispersion. In 

absence of wind (Figure 5a), i.e. 𝑣 = 0, the ellipses turn into circles corresponding to the lowest dispersion and 

the pollutant concentration tends to accumulate in the vicinity of the source cells. In this case, comparable 𝛼𝑘,𝑙 

values are obtained for all the neighbouring cells and their corresponding concentration values affect the 

concentration 𝐶𝐸𝑖,𝑗 with the same weight.  

 

 

Figure 3. Example of point location on the measurement position map. 

Figure 5 shows an example of the resulting PM10 and PM2.5 maps after the spatial interpolation according to 

Eq. (3) and using the measured concentration data, the wind intensity and direction. Concentration is 

represented according to a colour scale. Solid circles correspond to measured data, while hollow circles 

correspond to estimated data. The estimated values appear in good agreement with the close measured data. 



The estimate is less satisfactory in the periphery of the map where less measured points were available and the 

background concentration value 𝑐𝑏𝑔 was assumed. On the whole, the interpolation model appears effective 

considering that the error function NRMSE values, obtained according to Eq. (7), were in the range of 0.08-0.7 

for the majority of tested concentration maps. Analyzing the NRMSE calculated using the estimated data closest 

to the regional monitoring devices, the value of 0.1 is obtained, indicating a good agreement between the 

estimate and the measured values. Comparison with other spatial estimation methods will be the subject of 

further work. 

 

Figure 4. Decay coefficient elliptical fields to evaluate the concentration in the (i, j) point corresponding to the 

solid circle as a function of the concentrations measured in the eight neighbouring (k, l) points represented by 

the open circles for a) 𝑣=0, b) 𝑣=0.2, c) 𝑣=0.5, d) 𝑣=0.8 at wind direction of 247.5°. Corresponding 𝛼𝑘,𝑙values 

are reported on the curves. 

4. Conclusions 

The proposed interpolation method appears to describe qualitatively the effect of wind direction and intensity on 

the pollutant dispersion. The parameter relating the wind speed and the decay coefficient function 𝛼𝑘,𝑙 was 

optimized. This parameter plays a more important role than the mathematical function type chosen for 𝛼𝑘,𝑙 on 

the interpolation performance, provided that the weighing factors 𝑤𝑘,𝑙 of the neighbouring concentrations are 

normalized. The resulting deviation between measured values of PM10 and those estimated by the proposed 

method is generally lower than 4 µg/m3 and only in rare cases it approaches 10 µg/m3 with NRMSE of about 

0.3. These satisfactory results provide some confidence in the modelling approach and encourage further 

developments. Future work will consider a possible increase of the number of points with measured data to 

estimate the concentration in peripherical points. Finally, this type of spatial expansion could be used also in 

combination with other dispersion approaches like the Gaussian Plume and Puff dispersion models. 



 

Figure 5. a) PM10 and b) PM2.5 concentrations estimated applying the spatial interpolation model. Solid circles 

correspond to measured data while hollow circles correspond to estimated data. 
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