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The hybrid distillation-pervaporation process is an efficient method for the removal or recovery of volatile organic 

compounds from their aqueous mixtures. The hybrid distillation-pervaporation process has not only shown its 

excellent performance in the purification of solvent mixtures but also proven to have a potential of saving energy. 

In this study, the hybrid distillation-pervaporation process is optimized for the treatment of low-alcohol waste 

solvents. Three combinations are examined: distillation with hydrophilic pervaporation, distillation with 

organophilic pervaporation and distillation with both pervaporation methods. The hybrid systems result in a 

better performance in term of energy-use compared to conventional distillation. It is observed that a combination 

of distillation and hydrophilic or/and organophilic pervaporation is suitable for the separation of ethanol-water 

mixtures and the most recommended is the third layout. 
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1. Introduction 

In fine chemical industries, specifically in the pharmaceutical industry, treatment of wastewater and industrial 

waste solvents is a principal requirement. Production procedures generate large amounts of liquid waste and 

industrial waste solvents which contain various organic substances such as alcohol, e.g. ethanol, methanol, 

isopropanol, butanol and isobutanol. The separation of various organic substances from industrial wastewater 

is an essential and demanding task for environmental protection. The distillation and pervaporation membranes 

are commonly used in wastewater treatment as well as water supply. It must be said that the components of 

organic solvent mixtures often form azeotropic mixtures, therefore it is difficult to separate them by conventional 

methods. The distillation technique often proves to be a good solution to wastewater separation, except in the 

case of a mixture with high-water content and low volatile component. The hybrid distillation-pervaporation 

process is one possible solution for the removal of small contaminants from liquid mixtures. The research in this 

specific direction is quite dynamic and many results have been presented in recent studies, i.e. separation of 

Volatile Organic Compounds (VOC) from wastewater using hybrid distillation and pervaporation membranes 

process (Sommer and Melin, 2004), separation of ethyl acetate-ethanol mixture (Parvez et al., 2012), ethyl 

acetate-ethanol-methanol (León and Fontalvo, 2018), acetone-butanol-ethanol (Tóth et al., 2019), isobutanol 

(Omidali et al., 2014), isopropanol (Van Hoof et al., 2004), (Hassankhan and Raisi, 2020), tetrahydrofuran 

(Koczka et al., 2007), ethanol (Haelssig et al., 2011), and methanol (Luis et al., 2014) from aqueous mixture. 

Naturally, this pervaporation and hybrid distillation-pervaporation process is favorably considered as an 

attractive technology for several separation processes.  

In this study, the combination of the distillation and hydrophilic or/and organophilic membrane pervaporation is 

investigated. The hybrid distillation-pervaporation process is modelled and optimized by using the CHEMCAD 

process simulator to separate the ethanol-water mixture, which forms a homogeneous azeotrope with minimum 

boiling point.  
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2. Materials and methods 

The ethanol-water mixture was subjected to a separation process targeting the ethanol and water content of the 

mixture, by a hybrid distillation-pervaporation system. “Steady-state” modelling was used. The modelling was 

performed using CHEMCAD, a hybrid package of intuitive chemical process simulation software. UNIQUAC 

thermodynamic model was applied for the modelling of distillation and pervaporation. The main goal of the 

modelling work was to optimize the characteristics of the distillation column for the given ethanol-water mixture 

(data can be seen in Tables 1): the number of theoretical plates of the distillation column, the ethanol and water 

purities and reflux radio. 

2.1 Modelling schemes 

The alcohol-water mixture separation procedures, hybrid distillation-hydrophilic pervaporation system and 

hybrid distillation-organophilic pervaporation system are shown in Figure 1a and Figure 1b, respectively. From 

hydrophilic systems, water can be obtained in principle as a permeate product and ethanol as a retentate 

product, and the opposite is true for organophilic systems. 

 

 

 

 

 

Figure 1a: Flowsheet of hybrid distillation-

hydrophilic pervaporation system 

Figure 1b: Flowsheet of hybrid distillation-

organophilic pervaporation system 

2.2. Membrane characteristics, feed data 

The model has used a pervaporation membrane of 80 m2 for the separation, as a basic standard of industrial 

background. The number of theoretical plates of the distillation column was varied and optimized. The 

pervaporation membrane performance depends on the temperature and pressure at which the separation 

operates, and for this specific organophilic membrane type, they were set at 70 °C and 3 bar. In the case of the 

hydrophilic type, the feed conditions were 90 °C and 3 bar. The properties of the pervaporation membrane 

model ((Valentínyi et al., 2013), shown in Table 1, are in accordance with the experimental results which has 

been done by (Valentínyi et al., 2013) and (Haáz et al., 2019). 

Table 1: Hydrophilic pervaporation membrane parameters (PERVAP ™ 1210 type membrane) (Valentínyi et 

al., 2013) and Organophilic pervaporation membrane parameters (PERVAP ™ 4060 type membrane) (Haáz 

et al., 2019) for ethanol-water mixture 

Pervaporation units PERVAP ™ 1210 PERVAP ™ 4060 Unit 

Membrane surface 80 80 m2 

Section number 800 800 - 

Permeate pressure 0.008 0.008 bar 

Inlet pressure drop 0.1 0.1 bar 

Permeability 108 108 kmol/m2hbar 

Transport 

coefficient 

Water 0.000202 0.026 
kmol/m2h 

Ethanol 0.0000193 0.077 

Activity energy 
Water 77877 31363 

kJ/kmol 
Ethanol 128572 33090 

Parameter "B" 
Water 2.63 -0.73 

- 
Ethanol -8.68 -0.04 



More specifically, the feed composition was investigated with 2 % by weight ethanol and 98 % by weight water 

at 20 oC, 1 bar, and 1000 kg/h feed flow. The feed stream was entered into the middle of the distillation column. 

As a specific requirement, a minimum water content of 99.9% was targeted. 

3. Results and discussion 

3.1. Optimization of hybrid distillation-hydrophilic pervaporation system - D+HPV 

The optimization of the hybrid distillation-hydrophilic pervaporation system was performed establishing the 

relationship between theoretical plate numbers and ethanol purities, distillation column's reboiler duties, and 

reflux ratios. 

Figure 2 shows the relationship between the ethanol purities and theoretical plate numbers of the distillation 

column with ORIGIN program. As it can be seen, as the number of theoretical plate increases, the ethanol purity 

of the retentate product also increases. At first, the growth is more rapid, but it gradually becomes constant after 

a certain point. In Figure 2, the intersection of (11.45; 0.973) was found by plotting the equations. As the number 

of the theoretical plates approaches 12, the purity of the ethanol of the retentate product no longer increases 

significantly. Thus, it is not necessary to use a higher number of theoretical plates in this model. 

Similar analysis was performed between theoretical plate number and reflux ratio, as shown in Figure 3a. Figure 

3b illustrates the relationship between the number of the theoretical plates and reboiler duties. Based on these 

figures, it can be said that in both cases, when the number of theoretical plates increases, the reflux ratio and 

the heat requirement decrease to a point and then become stabilized. In both cases, the reflux ratio and the 

heat requirement values do not change after 12 plates, so it can be stated that there is a correlation between 

the three indicators. By using 12 plates, one can achieve the most economical and efficient separation. 
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Figure 2: In D+HPV, Intersection of equations describing plate number and distillate ethanol purity curves 
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Figure 3a: In D+HPV system, Intersection of the 

reflux ratio-plate number relationship 

Figure 3b: In D+HPV system, Intersection of the 

Reboiler duty-plate number relationship
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3.2. Optimization of hybrid distillation-organophilic pervaporation system - D+OPV 

Similar investigation was performed for the relationship between theoretical plate numbers and ethanol purities 

(Figure 4), theoretical plate numbers and reflux ratios (Figure 5a), theoretical plate numbers and heat (Figure 

5b) for the hybrid distillation-organophilic pervaporation system. Based on these figures, it can be seen that the 

theoretical number of plates increases, the ethanol purity of the distillate also increases, and the reflux ratio and 

reboiler duty decrease to a point and then become stable. Using the ORIGIN program, it’s possible to define the 

point on the curve where it starts to stabilize. As a result, 20 is the optimized number of the theoretical plates, 

in order to achieve the most efficient separation. 
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Figure 4: In D+OPV, Intersection of equations describing plate number and distillate ethanol purity curves 
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Figure 5a: In D+OPV system, Intersection of the    

reflux ratio plate number relationship 
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Figure 5b: In D+OPV system, Intersection of the 

Reboiler duty-plate number relationship

3.3. Separation results at the optimum point 

The results of D+HPV system (Figure 6), the D+OPV system (Figure 7) and the combination D+HPV+OPV 

systems (Figure 8) were examined at the optimum point. It can be seen, with the same feed composition flow 

(1000 kg/h, 98 % by weight water - 2 % ethanol and a membrane with an effective area of 80 m2), the water 

received in the D+HPV process is qualitatively and quantitatively high (99.99 % water as a bottom product with 

a flow of 978.6 kg/h and 99.75 % water with a flow of 0.814 kg/h as a permeate). In this case, the amount of 

water leaving the D+OPV process is 921.299 kg/h as retentate (its composition is 99.93 % water) and 58.027 

kg/h as permeate (its composition is 99.5 % water). The water’s quality and quantity of retentate leaving from 

D+HPV+OPV process (940.566 kg/h, 99.99 % water) is not too different than D+HPV system. The highest 

ethanol purity is also obtained from the D+HPV system (20.586 kg/h, 96.7 % ethanol), the next is D+HPV+OPV 



system (20.688 kg/h, 96.2 % ethanol), and D+OPV system (20.675 kg/h, 92 % ethanol). The maximum of 99.75 

% water can be obtained from D+HPV as permeate product. 

 

 

Figure 6: The D+HPV system at the optimum point - 12 of theoretical plates 

 

Figure 7: The D+OPV system at the optimum point - 20 of theoretical plates 

 

Figure 8: The combination D+HPV+OPV system at the optimum point - 12 of theoretical plates 

Finally, the consumed heat energy in the three systems were analyzed. In the D+HPV system, the heat energy 

for separation of ethanol-water is 325.817 MJ/h while in the case of the D+OPV is -10.014 MJ/h and in the 

D+HPV+OPV is -6.527 MJ/h. If the amount of heat is positive (in D+HPV system), the heat energy is absorbed 

by the system, i.e. the heat is added to the system and a negative value (in D+OPV and D+HPV+OPV systems) 

indicates the release of heat. The D+HPV system used much more heat than the D+OPV and D+HPV+OPV. 

This can be explained by the fact that after the distillation, the system needs a cooler, pump, and preheating 

procedures, see Figure 6, to provide the optimal conditions for the flow which needs to enter the pervaporation 

membrane phase. Meanwhile, in the D+OPV and D+HPV+OPV systems, the flow is fed into the organophilic 

pervaporation membrane without the cooling phase, which results in the effective use of the heat from the bottom 

product. Therefore, the total absolute of the heat energy is, indeed, less than the D+HPV case. 



4. Conclusion 

The hydrophilic membrane performs better in both qualitative and quantitative aspects of ethanol-water mixture 

separation compared to the organophilic membrane, though it consumes more heat energy. From a hybrid 

hydrophilic membrane system, three products can be obtained: ethanol-rich retentate and water-rich distillation 

bottoms and permeate. Thus, it can be stated that, in addition to ethanol enrichment, almost pure water can be 

obtained as a final product. In the D+HPV system, nearly pure water in the bottom product is achieved in each 

run, so the required purification could be met. In the case of the retentate, ethanol with a purity of more than 

96% by weight was obtained, i.e. it is possible to break the azeotropic point at the pressure of 1 bar. 

To summarize our work, it can be determined that the combination of D+HPV+OPV system obtained a better 

concentration of ethanol than the D+OPV system. Few differences can be detected in ethanol purity in the case 

of D+HPV and D+HPV+OPV layouts. However, D+HPV+OPV system requires the installation of additional 

pumps and heat exchangers, these do not bring significant extra expense due to their small size and capacity. 

It should be emphasized that the total heat requirement of the D+HPV+OPV system is lower, compared to the 

case of D+HPV system; therefore, the D+HPV+OPV arrangement is more favorable in terms of heat demand 

which results in more economical operation. 
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