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In this contribution, the monitoring and control problem of the natural gas liquids (NGL) extraction process is 

addressed by exploiting a data-driven approach. The cold residue reflux (CRR) process scheme is considered 

and simulated by using the process simulator Aspen HYSYS®, with the main targets of the achievement of 84% 

ethane recovery and low levels of methane impurity at the bottom of the demethanizer column. The respect of 

product quality is obtained by designing a proper control strategy that uses a data-driven approach based on a 

neural network to estimate the unmeasured outputs. The performance of the controlled system is assessed by 

simulating the process under various input conditions evaluating different control structures such as direct 

control and cascade control of the temperature in the column. 

1. Introduction 

Technological advances in extraction processes have turned natural gas into an energy resource increasingly 

used across the world. An additional source of profit comes from natural gas liquids (NGL), the C2+ hydrocarbon 

fraction contained in the raw gas. NGL has a higher market value than natural gas, as a source of feedstock 

materials for other production processes (Mokhatab et al., 2015), therefore it is preferable to separate these 

components from the raw gas, which is instead mainly used as fuel. For this purpose, different plant schemes 

have been studied and developed beginning from the conventional process scheme to optimize the recovery of 

these valuable elements and minimize the energy demand required by the process (Wilkinson and 

Hudson,1992). Among the developed schemes one of the most common is the cold residue recycle (CRR), 

where through plant modifications, that provide a reflux flow rate in the demethanizer column, it is possible to 

obtain a higher ethane recovery. In previous contributions by the authors, the cold residue reflux (CRR) process 

model was developed in the process simulator HYSYS®, which was selected due to its reliable performance in 

petrochemical, petroleum refining, oil assays, and all related industry (Chebier et al., 2019a). The CRR process 

has been constructed based on realistic operating conditions and has been used for the analysis and control of 

the separation process of NGL in the presence of typical disturbances (Chebier et al., 2019b). The previous 

studies showed that deviation of product quality from the target can be minimized by an appropriate control 

strategy, that can be based on temperature measurements and the estimation of the bottom boil-up (Tronci et 

al., 2020).  

The use of the simulator allows the collection of data that can be used to monitor the correct process 

performance and, through the use of deep learning techniques, to develop data-driven sensors. In this paper, 

the results previously obtained have been improved by exploiting data-driven modeling techniques to provides 

a trustworthy online estimation of these variables based on recorded historical measurements of measurable 

process variables (Zhang et al., 2014; Ghadipasha et al., 2018). The main goals of the present work can be 

summarized in the following points: (i) an accurate estimation of the boil-up used in the ratio control loop, (ii) the 

estimation of product composition using the easy-to-measure process variables usually available in industrial 



plants and (iii) the development of an inferential control for methane concentration that gives the set-point to the 

column temperature control loop. For this purpose, feedforward neural networks have been used to relate 

measured outputs to the unmeasured variables, enhancing the behavior of the control loops and the product 

quality by the estimation of the quality-relevant variables in real time. The obtained neural network models have 

been implemented in the process simulator HYSYS® and their performances have been tested by exciting the 

systems with various input signals.  

2. Description of NGL recovery plant  

The dynamic simulation of CRR process was developed in the process simulator Aspen HYSYS® and based 

on realistic operating conditions optimized under nominal operation (Chebeir et al., 2019). The raw gas was fed 

to the separation units with a molar flow rate of 4980 kmol/h and composition with a low content of liquids (Table 

1). The following inlet conditions were used: pressure equal to 5818 kPa and temperature equal to 35 °C. 

Table 1. Feed gas composition for the NGL recovery plant 

Component Composition 

Nitrogen 0.01 

Methane 0.93 

Ethane 0.03 

Propane 0.015 

Butanes 0.009 

Pentanes 0.003 

Hexanes 0.003 

%C2+ 6 

 

The main difference of this process structure when compared to other schemes (Chebier et al., 2019) resides 

in the incorporation of a reflux stream in the column overhead. The methane reflux intends to improve the 

rectifying section so that only a negligible amount of ethane and heavier components escaped from the column 

overhead. The scheme of the process is reported in Figure 1, along with the designed control loops. 

 

 

Figure 1. CRR scheme and control structure 

3. Control strategy  

The target values for the demethanizer are 84% for ethane recovery and 1 mol% for methane concentration in 

the bottom. The ethane recovery has been maintained by controlling the temperature in the separator TK-100 

(Figure 1), while the methane concentration has been indirectly controlled by the temperature loop. The 

efficiency of the column temperature controller has been improved by adding a flow-rate controller as slave of 



the temperature controller in a cascade configuration (Tronci et al., 2020). The flow-rate controller maintains 

constant the ratio between boil-up and bottom and uses an estimation of the boil-up because it is not measured 

in real plants. 

Even if the position of the temperature measurement has been properly set using a per-component contribution 

diagram (Porru et al., 2015), its control does not guarantee the respect of methane concentration targets when 

feed composition changes. This problem has been solved by using an inferential control that has been added 

to the cascade. The configuration for methane control is therefore formed by three loops. The external loop is 

the methane composition control, that gives the set-point to the temperature control. The most internal loop is 

the flow-rate controller that receives the set-point from the temperature loop.   

4. Data-driven soft sensor 

The control strategy represented in Figure 1 needs the evaluation of two variables, the bottom boil-up and the 

methane concentration, which are not usually measured in industrial plant. If an analyzer is present for 

measuring product concentration, it takes time to perform the analysis. An accurate real-time estimation of such 

variables can indeed improve control performances. Furthermore, the effectiveness of the two control loops to 

reach the required ethane recovery can be continuously evaluated by estimating ethane concentration in the 

bottom product. Such considerations led to the development of data-driven tools for the estimation of the 

measured variables. Because of their successful application in the process industry, feedforward neural 

networks have been used to relate the unmeasured outputs to the available variables.  

In this work, a knowledge-based approach supported by statistical tools has been used to identify the inputs of 

the network, which are the variables affecting the estimated output. The selected network architecture has one 

hidden layer and the number of hidden neurons has been selected starting with the simplest model, with only 

one hidden unit, and adding one more neuron until a significant change in the model performance was observed 

(Spigno and Tronci, 2015; Tronci et al., 2019). Input and hidden layers have been augmented with an extra 

neuron, the bias, which provides a constant output signal equal to one. The selection of the best neural network 

model has been accomplished by considering the determination coefficient (R2) and mean squared error (MSE) 

as performance indexes. 

5. Results 

5.1 Soft sensor  

Data (one month of operation with sampling time of 10 minutes) for training the network have been obtained by 

considering changes in the feed flow rate and inlet composition. The former variation simulates the variability 

due to natural gas daily demand (range of variation: 4500-5500 kmol/h), while the latter mimics changes in 

extraction basin characteristics (range of variation for methane: 0.92-0.94; range of variation for ethane: 0.02-

0.04%). The measured data collected to train the neural networks include noise normally distributed with zero-

mean, in order to obtain a more realistic representation of real plants data. Standard deviation equal to 0.04 °C 

and 20kPA has been used for temperature and pressure measurements, respectively. Variations of ±1% have 

been considered for flowrate measurements, ±0.2% for level measurements and ±2% for composition 

measurements. The structure of the NN models for the estimation of boil-up, methane and ethane are reported 

in Table 2 along with the statistical performance indexes. 

 
Table 2. Neural networks inputs and statistical performances 

 

Boil-up 

Inputs 
Temperature difference between tray 28 and bottom; column bottom 

temperature; bottom product temperature and bottom product flow rate. 

Hidden neurons R2 Train MSE Train R2 TEST MSE TEST 

6 0.997 3.88E-02 0.990 3.59E-02 

Methane 

conc. 

Inputs 
Temperature difference between tray 28 and bottom; separator 

temperature; separator pressure and bottom product flow rate. 

Hidden neurons R2 Train MSE Train R2 TEST MSE TEST 

3 0.985 2.55E-07 0.953 1.59E-07 

Ethane 

rec. 

Inputs 

Temperature difference between tray 28 and bottom; separator 

temperature; separator pressure; bottom product flow rate; separator 

liquid product flow and separator level. 

Hidden neurons R2 Train MSE Train R2 TEST MSE TEST 



3 0.941 1.34E-04 0.807 1.37E-04 

To validate reconstruction capabilities of the neural networks, they were implemented in the Aspen HYSYS® 

simulation and compared with the actual values of the target variables by varying the input flow rate with step 

changes of different amplitudes. Results are reported in Figure 2. It is worth noting that validation has been 

performed by considering different input changes concerning to the ones used for selecting the best neural 

network models.  

 

Figure 2. Comparison of actual boil-up and boil-up soft-sensor measurements (left panel); comparison of actual 

methane concentration and methane soft-sensor measurements (central panel); comparison of actual ethane 

recovery end ethane recovery soft-sensor measurements (right panel). 

Figure 2 shows that the software sensors for boil-up (left panel) and methane composition (central panel) are 

able to reproduce the actual variables trend quite accurately. The soft sensor for ethane recovery shows poorer 

performance with respect to the other ones, because it cannot predict peaks but only the average trend. It is 

nevertheless useful for monitoring this production index if no other information is available in the plant.   

5.2 Control performance 

The performances of the soft sensors and the proposed control structures to maintain ethane recovery of 84% 

and methane composition of 1 mol% in the bottom product of the demethanizer column have been evaluated 

by simulating the process under feed disturbances considering step variations in the inlet flow rate of ±10%. For 

sake of brevity, only the results obtained when the inlet flow rate is increased are reported.  The following control 

structure are considered: (i) conventional controller (direct temperature control in the separator and 

demethanizer column), (ii) two loops cascade with boil-up estimated with the neural network (hereafter indicated 

with CAS-1), (iii) three loops cascade with delayed methane measurements (hereafter indicated with CAS-2) 

and (iv) three loops cascade with methane estimated with the neural network (hereafter indicated with CAS-3).  

In Figure 3 the responses for a 10% increasing in the inlet flow rate is depicted. In this case, product composition 

is indirectly controlled by keeping separator and column temperature at the required set-point. Considering the 

column tray temperature profile (left panel, top),  the cascade control CAS-1 drastically reduces the initial 

variation with respect to the conventional control. This behavior implies a reduction of methane initial deviation 

and a faster response of this variable. Even if the temperature is kept at the required set-point, methane 

concentration does not reach the target, but a final offset of 0.3% is obtained with the two control strategies.  

The implementation of the soft-sensor for ethane recovery (Figure 3, right panel, bottom) can reduce the impact 

of noise in the measurement and give a satisfactory reconstruction of the ethane recovery behavior. 

To satisfy the specifics for the product composition, another control loop has been added. In particular, a 

methane composition controller has been designed to adjust the temperature controller setpoint, leading to the 

implementation of three loops cascade controllers. Two different situations have been considered: (i) the use of 

delayed concentration measurements obtained through the use of an on-line analyzer and (ii) an inferential 

control based on the estimation of the neural network model. In Figure 4, the comparison between the two 

control strategies CAS-2 and CAS-3 are reported. It is worth noting that when using delayed measurement, the 

sample is taken every 30 minutes, and the analyzer has a delay equal to 10.  



 

 

Figure 3. Profiles obtained with conventional controller and the proposed two loops cascade controller (CAS-1) 

for methane impurity level (left panel) and the temperature control for ethane recovery (right panel) for a 10% 

increase on the inlet flow rate. 

 

Figure 4. Profiles obtained with the three loops cascade controller for methane impurity level with on-line and 

delayed methane measurements (CAS-2) and with methane soft-sensor (CAS-3) (left panel) and the 

temperature control for ethane recovery (right panel) for a 10% increase on the inlet flow rate. 

Figure 4 shows the behaviors obtained in response to a 10% increase in the inlet flow rate. The methane 

composition profiles (Figure 4, left panel, bottom) with the CAS-2 control shows a higher initial deviation and 

sluggish response. The use of delayed measurements implies a more conservative control action. When the 

estimation is available in real time (CAS-3) the performance of the controlled system improves because the 

initial deviation is smaller and the controlled output response is faster. Because of the estimation error of the 



soft-sensor, a small offset is present when using the inferential control.  The implementation of the soft-sensor 

for ethane recovery (Figure 4, bottom right panel) filters the noise in the measurement and gives a satisfactory 

reconstruction of the ethane response. 

6. Conclusions 

The control problem of a process for the extraction of natural gas liquids was addressed by exploiting neural 

network modeling to obtain a real-time estimation of critical variables. The developed soft-sensors were able to 

effectively reconstruct the dynamic behavior of the boil-up of the demethanizer column and the methane 

concentration in the bottom product. Those estimations were successfully used as controlled outputs in two 

different control configurations to guaranteeing the required target for both feed flowrate and inlet composition 

variations. The same data-driven approach was also applied to estimate the recovery of ethanol in the 

demethanizer, obtaining a valuable tool for monitoring the process in real-time when the analyzer has a long 

delay or is not present. In order to improve the estimation capabilities of the soft-sensors and controllers, a new 

campaign of simulations will be conducted to better characterize the process in the designed target conditions. 

Further investigations are also planned to evaluate the performance of different data-driven algorithms.  
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