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The world is facing a new reality when it comes to sustainability. All major oil and gas companies around the 

world are being pushed to operate their facilities, upstream, midstream or downstream, with the minimum 

amount of waste and hazardous emissions. The “green processes”, as the industry calls them, are not the 

exception anymore but the standard. 

RAM analysis provides key parameters to guarantee a sustainable process. The equation is quite simple: 

more reliable processes use less feed products, reduce the size of storage and deliver the same amount of 

end-product. 

A good example of how applying reliability methods can guarantee a sustainable process is carrying out a 

RAM study at an upstream asset. By replicating the design configuration and operational procedures of the 

platform in a virtual model, the analyst gets a complete picture of the performance including production rates 

of oil, gas and water, the critical systems and equipment leading to the major losses as well as the 

effectiveness of the maintenance strategy. Supplied with this information, optimisation and reduction of 

downtime can be easily performed by running sensitivities analysis. Finally, suggestions in regards to design 

configuration, different maintenance strategies and de-bottlenecking of the platform are defined considering 

implementation cost and return on investment (ROI). Traditional RAM analysis for the oil and gas industry 

should be able to cover all these scenarios (Calixto, 2016).  

Many companies are evaluating the benefits of RAM analysis during the operational stage. One of possible 

application is to understand the environment impact of a specific design configuration or operational 

procedure. 

DNV GL has developed a software tool that integrates Sustainability aspects into the traditional Reliability, 

Availability and Maintainability analysis. This approach, namely RAM2S (Alvarenga, 2009), helps to overcome 

the lack of quantitative numbers to support many potential engineering solutions to account and thus reduce 

or even avoid methane, CO2 or any GHG emissions. Superficial assessments might have been crucial to 

avoid sustainable and safer solutions being implement or further developed. This integrated approach, for 

instance, will allow natural gas industries to find more cost-effective alternatives to align even more their 

business towards global warming reality, overcoming or minimizing the inherent green-house gas emissions.  

This paper presents a case study where RAM analysis is implemented to evaluate the impact of flaring 

operations to the environment and its impact on the asset performance.  

1. Introduction 

The world is facing a new reality when it comes to sustainability. All major oil and gas companies around the 

world are being pushed to operate their facilities, upstream, midstream or downstream, with the minimum 

amount of waste and hazardous emissions. The “green processes”, as the industry calls them, are not the 

exception anymore but the standard. 

In this context, flaring operations act a major source of damaging gases for the environment such as methane 

and carbon dioxide (CO2). By using advanced analysis methods and optimising production, oil and gas 

companies can take steps to limit harmful flaring. 



Currently, five per cent of world annual gas production is being flared or vented. This is equivalent to about 

110 to 140 billion cubic metres (bcm) of gas. It equates to the combined gas consumption of Central and 

South America in 2013. 

This paper presents an extended approach to the traditional and very well-established RAM analysis 

methodology, integrating sustainability factors. This approach allows the analyst to align the decision-making 

process related to design configuration and maintenance strategy to gases emission targets. Challenges 

related to gases emission targets are particularly important for major oil and gas companies that are being 

pushed to operate their facilities with the minimum amount of waste and hazardous emissions. Many countries 

have very strict rules when it comes to the emission of hazardous gases to the environment. For instance, the 

Brazilian government restricts the amount of gas burned to be up to a certain percentile of the gas reserve. 

For Brazil, the issue becomes even more relevant as studies have shown that the concentration of carbon 

dioxide in the new offshore fields associated to the Pre-Salt zones is very high. 

2. Case study – Offshore installation 

The case study evaluates the performance of an offshore platform which produces oil, gas and water. The 

model is used to forecast 10 years of the system life. A base case will be developed to establish preliminary 

estimates of gas burned based upon failures in the Gas Processing systems.  

To quantify the amount of gas burned during the lifecycle of an offshore facility, the first step is to defining all 

parameters required by a traditional RAM study such as: design configuration, reliability data, maintenance 

strategy and operational rules. RAM analysis inherently estimates the number of failures (Zio,2013) occurring 

in the gas related systems as well as the number of hours these systems are not operating. Consequently, the 

amount of gas by-passed to the flaring operations, caused by failure events, can then be quantified based on 

this production rates. These production rates are important as the amount of gas burned will differ if different 

systems fail. For example, the high-pressure gas tends to have a higher production rate when comparing to 

low-pressure gas – this means that failures in the system processing high-pressure gas will result on burning 

more gas when compared to failure in the low-pressure gas system. Many outputs can be derived using this 

method, examples of key environmental impact information are: amount of gas flared, Number of stops due to 

environmental restrictions and Gas production. 

The model will also report the system productivity given constraints in the flaring operations and failures in 

other systems as well as identifying the relative importance of the various subsystems.  

A “base case” model of the system will be developed and used as a yardstick for comparing changes in 

design configuration, operating policy, maintenance policy etc. Sensitivity cases are run to improve and 

optimise the system performance with focus on flaring operations. Three scenarios are tested: 

1. Minimum and Maximum case to benchmarking improvements to the base case 

2. An optimised spare management strategy for the compressors 

3. Replacement strategy for compressor component 

One key aspect of this base case model is the flaring limits. The flaring limits are typically related to structural 

problems (e.g. flare stack cannot take radiation for more than 12 hours) or an environmental limit (e.g. 

regulatory rules which state the platform can only burn 1% of its gas production). This restriction is either a 

limit based on: Volume, percentage of production and time. All flaring limits refer to an accounting period 

which is the time within which the limits must be adhered to. If these limits are breached within any accounting 

period, then production will be affected. This case study will incorporate a limit of 2% of the gas production can 

be burned per month. 

3. Results 

Upon completion of the modelling process, the model can be run and results assessed. The first result is the 

measure to the platform’s ability to export oil, the primary product which is called production efficiency. This 

relates to total volume produced at the export system to that which would have produced had all equipment 

run without failures throughout the system life. 

The production efficiency for oil is 95.37% with 1.09% of standard deviation. The standard deviation is large 

for this model – this means the production efficiency is varying between 94.2% and 96.5%. 

A criticality analysis is also produced as part of the results. This analysis is used to rank the events 

responsible for highest production loss. From the Subsystem criticality, the most critical system is the 

“Planned Maintenance” which is responsible for 45.9% of the production losses. “Gas injection system” is the 

second in terms of criticality, responsible for 28.6% of the losses. 

Information in the criticality graph can be drilled-down to access different levels of the detail. At the subsystem 

level, the highest level in the model, the combination of production loss coming from different equipment items 



is displayed. By drilling into Gas Injection system, one can see the top contributors within this system are the 

1
st
 and 2

nd
 stage injection gas compressor, as shown in Figure 1: 

 

Figure 1: Main contributors to the production loss under the Gas Injection system 

This criticality analysis also includes delays related to maintenance resource logistics – this means that delays 

related to the unavailability of spare parts is also shown here. Further investigation to the maintenance 

resource analysis shows that on average four maintenance jobs are delayed because of the lack of spare 

parts.   

It is important to note that the criticality analysis is tracking production for the oil and when flaring operations 

take place, the oil production continues until the flaring limit is breached. This means the criticality analysis will 

consider the fact the system can by-pass failures in the compression system up to a point, reducing the 

contribution of criticality. The criticality analysis could be calculated based on the system ability to produce 

gas; this scenario would include all failures from the compression system to the criticality analysis. 

Furthermore, this set of results could be identified as the main reasons why the flare is needed. Comparing 

the two results, one can see an increase on the criticality for the gas related systems – Gas Injection system 

and Flash gas system. This difference is also how production is gained because of the system’s ability to 

perform flaring operations. 

The base case shows an average of 4.3 shutdowns per year have been simulated due to flaring limits with an 

average number of flaring operations of 13.5 per year. This will be the main KPIs to measure flaring 

operations. 

4. Performing a what-if scenario 

One of the most powerful aspects of RAM analysis is the ability to simulate and inspect the behaviour of a 

complex system under some given hypotheses, called scenarios. The following section lists all sensitivity 

cases that were identified and evaluated: 

4.1 Sensitivity case – Minimum and Maximum case  

To support the process of benchmarking models, another two versions of the base case model is run: Case 1: 

No Limits to Flaring operations; Case 2: Base Case, and Case 3: Flaring operations are not allowed 

Table 1 shows the main results for Case 1, Case 2 and Case 3. 

Table 1: Main results for benchmarking against sensitivities 

Results Case 1 Case 2 Case 3 

Average efficiency 97.69% 95.37% 93.83% 

Flared   Volume - HP Gas (mmscf) 2381 647 - 

Flared   Volume - LP Gas (mmscf) 3847 1515 - 

 

These models can be used as minimum and maximum case for the flaring operations – they show how much 

production the system is recovering because of flaring operations and how much production could be 

achieved if flaring was allowed for longer in specific scenarios. 

If flaring operations were allowed all the time, the system would be producing 2.3% more comparing to the 

base case. This can be used to assess whether there are specific scenarios where continuing flaring 

operations might be allowed if it doesn't compromise safety/regulations. On the other hand, if more restrictions 

were added to flaring operations, production efficiency could be as low as 93.8% on average, close to 4% 

below the scenario where flaring operations are permitted all the time and 1.5% when compared to the 



scenario where flaring operations are limited. This can be used to show the risk involved to not having the 

flare available – either because of process and regulatory. 

These three results can be used to understand the trends in flaring operations, providing scientific support to 

decisions related to maintenance strategy for specific items, opportunistic maintenance and a replacement 

strategy/ranking for equipment items/systems.  

4.2 Sensitivity case – Maintenance strategy   

A new for the spare management is implemented to reduce the delay associated with maintenance resource 

logistics. The base case shows four repair job delays caused by the unavailability of spare compressors.  

The new strategy evaluates a modification to the Restock level; instead of waiting until there are no spare 

parts in the warehouse, the centralised maintenance management system will order a new spare when one is 

used.  

The results are displayed in Table 2: 

Table 2: Main results for maintenance sensitivity 

Results Case 1 Case 2 

Average efficiency 95.37% 96.53% 

 

This sensitivity case shows an increase in efficiency of 1.2% when compared to the base case. However, this 

change has minor impact to flaring operations and the amount of burned gas. The number of shutdowns per 

annum is reduced from 4.4 to 4.2. This result indicates maintenance resource logistics have no impact over 

flaring operations, in this case. This can be explained by the fact that improving maintenance resourcing will 

impact the duration of the shut downs. However, the reduction in duration is not enough to reduce the number 

of times the flaring limits are breached. 

There is another improvement to the model– the standard deviation went down from 1% to 0.4%. Reducing 

the standard deviation represents working with models that more predictable. 

4.3 Sensitivity case – Replacement strategy for compressor component 

Drilling into Gas Injection system criticality results, one can see the top contributors within this system are the 

1st and 2nd stage injection gas compressor. Initially, these items are defined with a single failure mode which 

is used to describe all the potential failures that could occur. Looking at the original data gives the opportunity 

to identify the reliability data for a “component” level. The detailed component failure modes are described in 

Table 3: 

Table 3: 1
st
 and 2

nd
 stage injection gas compressor failure modes 

Failure Mode 
MTTF (years) - 

Exponential 
MTTR (hours) - 
Constant repair 

Capacity Loss 
at Failure 

Capacity Loss 
at Repair 

Compressor driver 3 72 100 100 

Degraded 0.9 
12-24 hours 

(rectangular) 
75 100 

Overheating 9.5 12 100 100 

Spurious trip 5 12 100 100 

Vibration 9 12 100 100 

 

It is important to note that the Compressor driver has also been defined using a Weibull distribution. This 

means that some ageing has been associated with the failure. The parameters for a Weibull distribution can 

be calculated using data fitting methods based on historical data. Furthermore, the new reliability data should 

be associated with the right maintenance resources. This requires the analyst to add another spare part for 

the spurious trip in addition to the compressor driver.  

As expected, upon completion of the simulation with the new reliability data should present very similar 

results. 

Within the contributors of the compressor failure modes, the compressor driver is the highest, contributing with 

8.432% of the total of 13.686%, as shown in the following graph: 



 

Figure 2: Main contributors for new replacement strategy for compressor component  

To mitigate the production loss coming from these items, it is possible to implement a maintenance strategy 

that replaces specific parts of a component based on a preventive activity. Replacing parts in a controlled 

environment leads to less shut down time e.g. waiting for the compressor driver to fail leads to 72 hours of 

repair, whereas replacing only takes 24 hours to replace the item.  The next question is: how often should the 

compressor be replaced? 

Three different replacement frequencies are tested: every 6 Months, every 1 Year and every 2 years. Table 4 

displays Average efficiency results for all cases: 

Table 4: Average efficiency results for all cases 

Results Case 1 (Base case) Case 2 Case 3 Case 4 

Average efficiency 

(delta) 
95.37% 0.714 0.72 0.456 

Average efficiency 95.37% 96.08% 96.09% 95.83% 

 

Comparing the criticality results, it shows a great reduction on the criticality for the Gas Injection system. 

Regarding the flaring operations, Table 5 shows the flaring results for all cases. 

Table 5: Flaring results for all cases 

Flare Name Ops/Year 
Duration 

(hours/year) 
Volume 

(mmscf/year) 
Shutdowns/Year 

Downtime % 
production 

Base case 13.5 152.14 216.28 4.357 2.36 

6 months 15.761 161.04 237.61 4.022 1.638 

1 year 13.661 148.28 204.2 3.721 1.639 

2 year 13.694 149.74 208.44 3.845 1.903 

3 year 13.697 149.66 209.84 3.901 2.066 

 

The number of operations for the base case is 13.5 which is very similar to all cases. The exception is the 

case where replacement is performed every 6 months, which makes sense as the system is constantly being 

shut down to replace the part.  

The cases that lead to better performance are related to replacement strategies performed every 6 months 

and 1 year. They also show very similar performance indicators (around 96% of performance) but the latter is 

showing a reduction on the amount of volume flared. Furthermore, the average number of shutdowns went 

down by 0.5 shutdowns per year. This represents an improvement to the base case. However, the number of 

shutdowns did not come down because the amount of time is being saved is not enough to avoid the flaring 

limits breach.  

The new criticality chart now displays the Flash Gas System as the major contributor to production loss. Within 

this system the most critical items are the compressors. The same method applied before is used to define a 

maintenance strategy that replaces these compressors. To implement the same strategy, the planned 

maintenance activity duration must be doubled to account for the second set of compressors.  

This reduces the flaring operations per year from 4.3 to 3, effectively reducing the amount of gas burned. 

Another interesting result of this new detailed approach relates to the delays associated with maintenance 

spare parts. The job delays associated with the compressor maintenance logistics relates only with the 

compressor driver. The second spare part, responsible for replacing spurious failures, present 0 repair delays 



associated with it. The compressor driver still shows around 4 job delays caused by the lack of spare parts 

available. 

This means that the second sensitivity could be used to mitigate this specific bottleneck. 

5. Conclusions 

RAM analysis is a well-stablished methodology mainly used during the design optimisation stage of different 

industries. In the oil and gas industry, RAM analysis can be extended to include production rates which adds 

to the simulating capabilities and decision-making process.  

One of the areas of application of this hybrid version of RAM analysis, namely RAM2S, is environmental 

analysis concerning flaring operations.  

The ability to track failure in the compression system already incorporated to the traditional RAM analysis can 

be extended to calculate the amount of gas that would be burned in case of planned and unplanned 

shutdown.  

The case study gives an example of the applicability of the analysis – the performance of an offshore oil and 

gas production platform is assessed for the period of 10 years. The main objective of this study is to assess 

amount of gas burned due to failures at the compression system. 

After running the simulation, the production efficiency for oil is 95.37% with 1.09% of standard deviation. The 

standard deviation is large for this model – this means the production efficiency is varying between 94.2% and 

96.5%. From the Subsystem criticality, the most critical system is “Gas injection system”, responsible for 

28.6%. 

All this information leads to three sensitivities which are used to investigate opportunities to reduce the 

emission by burning gas in addition to optimising the performance of the platform.  

An optimised version of the model is generated by evaluating all the different sensitivities results. If the 

replacement strategies are implemented, the average efficiency could be increased by 0.7% and the number 

of shutdowns caused by flaring operations reduced from 4 to 3 per year.  

Performance forecasting is a methodology based on RAM analysis specifically design to cover the oil and gas 

modelling needs. This methodology has been an important tool for design optimisation but there is a great 

shift in the market to start applying this method during the operational stage. However, the ever-changing 

state of an oil and gas production system poses several challenges to performance prediction studies. This is 

especially true for reservoir data where many variables have a transient behaviour (e.g. production rates) 

making it complex to predict. This method provides the tools to combine several variables into a complex 

system and make informed decisions. 
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