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In this paper, we define the mathematical model of a tri-objective fuzzy agricultural food load planning 

problem, which is a blend of the multi-objective optimization, the multidimensional knapsack problem, and the 

multiple knapsack problem under fuzziness. For the imprecise model, profit and shelf life for each agricultural 

food product are fuzzified and represented by triangular fuzzy numbers, and then defuzzified by the graded 

mean integration representation method. To solve this problem, we develop a pareto-based discrete firefly 

algorithm. In this algorithm, both the initial configuration and movements of fireflies are redefined. Meanwhile, 

a two-phase repair operator is proposed to guarantee the feasibility and quality of solutions. The (μ+λ)-PAES 

(Pareto Archived Evolution Strategy) with a 3-dimensional adaptive grid algorithm is adopted to optimize the 

population of fireflies. Finally, the effectiveness of the proposed algorithm is evaluated based on 14 problem 

instances.  

1. Introduction 

Given that refrigeration stops or reduces the rate at which biochemical changes such as browning reactions 

and pigment degradation occur in food, many agricultural food products should be transported by refrigerated 

vehicles (James and James, 2010). Thus, an optimal load plan is critical for maintaining the food quality and 

improving the profitability of the shipment. However, in the field of food engineering, which has a close 

relationship with chemical engineering (Chen and Yoo, 2006), the focus has been kept on vehicle routing 

problem while studies about load planning are quite few. Therefore, it is worthwhile to model the agricultural 

food load planning problem for point-to-point short-haul transportation and develop its solution approach.  

It is obvious that this problem can be regarded as a complex variant of the knapsack problem. So far, there 

has been a large amount of literature concerning the algorithms for solving knapsack problems. These 

algorithms can be broadly divided into two major fields as exact algorithms and heuristic algorithms. Given 

that exact algorithms are usually infeasible when the problem is too complex, we will use a non-exact 

algorithm to get near-optimal solutions.  

As a famous meta-heuristic algorithm, the firefly algorithm is applicable to almost all engineering areas (Fister 

et al. 2013). Yang (2012) proposed the multi-objective firefly algorithm by extending the basic firefly algorithm 

which was proposed by himself to solve multi-objective optimization problems. Given that the original firefly 

algorithm was developed to solve continuous optimization problems, some modifications of it have been 

proposed to solve discrete optimization problems such as the two-dimensional min-cost covering problem (Lu 

and Wang, 2015) and the fuzzy cold storage problem (Lu and Wang, 2016).  

In terms of multi-objective optimization, the Pareto Archived Evolution Strategy (PAES) can be used as a 

simple baseline algorithm (Knowles and Corne, 2000). It uses a non-dominated solutions archive to determine 

whether a candidate solution should be accepted or not. As an important variant of PAES, the (μ+λ)-PAES 

aims to mutate one of the μ current solutions to generate λ mutants per iteration. Meanwhile, an adaptive grid 

algorithm which is an integral part of PAES is usually used as the crowding procedure to optimize the 

population of fireflies. Therefore, we attempt to propose a pareto-based discrete firefly algorithm (PDFA) which 

integrates the firefly algorithm with the (μ+λ)-PAES in this paper.  



The rest of the paper is organized as follows. In Section 2, the mathematical model of the tri-objective fuzzy 

agricultural food load planning problem is given. In Section 3, the pareto-based discrete firefly algorithm is 

designed and presented in detail. In Section 4, computational performance of the proposed algorithm is 

presented through a series of simulation experiments. Finally, conclusions are presented in Section 5.  

2. Problem formulation 

2.1 Mathematical description of the proposed model 

It is assumed that there are many agricultural food products to be transported by some single-temperature 

refrigerated trucks for short-haul transportation. Let N = {1, 2, ... , n} be the set of products and M = {1, 2, ... , 

m} be the set of vehicles. The profit, weight, volume, shelf life, and optimal temperature range for storage of 

the product j are denoted by p
j̃
,  wj ,  vj, sj̃ , and [tj , tj ] respectively. Shelf life is the time during which an 

agricultural food product remains safe and nutritious for consumption under appropriate storage conditions. 

Due to the impreciseness of the profit and the shelf life for each of the agricultural food product,  p
j̃
 and sj̃ are 

given as fuzzy numbers. q
i
w, q

i
v and 𝑇𝑖  are weight limit, volume limit, and compartment temperature of the 

refrigerated truck i. The binary decision variable 𝑥ij  denotes whether the product j is assigned to the 

refrigerated truck i or not. Thus, the agricultural food load planning problem is formulated as follows:  

max    Ip=∑ ∑ p
j̃
𝑥ij

n
j=1

m
i=1   (1) 

min     Is=∑ ∑ sj̃𝑥ij
n
j=1

m
i=1   (2) 

max    𝐼m = ∑ ∑ 𝑥ij sim(Ti , [tj, tj])
n
j=1

m
i=1   (3) 

subject to:  

∑ wjxij ≤ q
i
wn

j=1 , ∑ vjxij ≤ q
i
v, n

j=1              ∀i ∈ M (4) 

∑ wj > ∑ q
i
wm

i=1
n
j=1 ,   ∑ vj > ∑ q

i
vm

i=1
n
j=1 ,   (5) 

 wj < q
i
w, vj < q

i
v,                                       ∀i ∈ M,  ∀j ∈ N (6) 

 xij ∈ {0,1},                                                 ∀i ∈ M,  ∀j ∈ N (7) 

𝐼p and 𝐼s stand for the total sum of profits and shelf lives of all products to be loaded respectively. They state 

that the total profit is to be maximized and products with short shelf lives are preferred. 𝐼m aims to minimize 

the difference between the optimal temperature range of those products and the compartment temperature of 

their refrigerated trucks. Let φ = min { tj  |  j ∈ N } and φ = max { tj |  j ∈ N }. To measure the similarity between 

a range of a crisp value, we use the following formula which was proposed by Slonim and Schneider (2001).  

sim (Ti, [tj, tj]) =

∫ (1−
|x− Ti|
φ− φ

) dx
tj

tj

tj − tj

 =

{
 
 
 
 

 
 
 
 

1−
tj + tj − 2Ti

2 (φ− φ)
,

1−
(tj − Ti)

2 + (tj − Ti)
2

2(φ− φ)(tj − tj)

1 −
2Ti − tj − tj

2 (φ− φ)
,

  

 

Ti ≤ tj 

 

tj < Ti <  tj 

 

tj ≤ Ti 

(8) 

Constraint (4) enforces the capacity of weight constraint and the capacity of volume constraint. Generally, this 

model can be regarded as a 0-1 integer programming problem with constraints (5)-(6). The decision variable is 

defined in constraint (7).  

2.2 Integrating graded mean integration representation method into the proposed problem 

In the tri-objective fuzzy agricultural food load planning problem, we fuzzify p
j̃
 and sj̃  as triangular fuzzy 

numbers. Hence, they can be written as p
j̃
  = ( p𝑗-∆jl,  p𝑗  ,  p𝑗+∆jr ) and sj̃  = ( sj-∆jl

' ,  sj ,  sj+∆jr
'  ), where ∆jl,  ∆jr,  ∆jl

' , 

 ∆jr
'  are determined by decision makers.  

Graded mean integration representation (GMIR) method is a popular defuzzification technique proposed by 



Chen and Hsieh (1998). The GMIR of p
j̃
 is denoted by Φ𝐺 (pj̃

) and defined as:  

Φ𝐺 (p
j̃
) =

∫ h[L-1(h)+R-1(h)]
1

0
dh

2∫ h
1

0
dh

=
∫ h{[p

j
-(p

j
-∆jl)]h+p

j
-∆jl+[pj

-(p
j
+∆jr)]h+p

j
+∆jr}

1

0
dh

2∫ h
1

0
dh

=
6p

j
− ∆jl + ∆jr

6
 (9) 

The GMIR of sj̃ can be calculated in a similar way.  

3. Description of the pareto-based discrete firefly algorithm 

3.1 Encoding scheme 

In this algorithm, we use the vector X = ( x1, x2, … , xn ) to denote a solution. For example, let xj = i if the 

agricultural food product j is assigned to the refrigerated truck i, and xj = 0 if the product j is assigned to none 

of those vehicles. The light intensity of a firefly is denoted by I = ( 𝐼p ,  𝐼s ,  𝐼m ).  

3.2 Initialization of firefly population 

In the MOFA, initialized fireflies are distributed as uniformly as possible (Yang, 2012). In this procedure, we 

generate initial population by Equation 10 based on the greedy heuristic algorithm proposed by Hiley and 

Julstrom (2006). In order to do this, we firstly define the PRT ( j ) of an agricultural food product j :  

PRT ( j ) =

Φ(p
j̃
 )

Φ(max{p
j̃
 | j ∈ N})

+1-
Φ(sj̃ )

Φ(max{sj̃ | j ∈ N})

θ1wj + θ2vj

 
(10) 

Next, let S = ( s1, s2, …, sn ) be a sequence that sorts by Equation 10 in descending order. To avoid duplicate 

solutions, select each food product with a high probability to load. At the end of this procedure, add non-

dominated solutions to an archive F. We use pop_size to denote the population size. 

3.3 Movement of fireflies 

We use the Hamming distance to evaluate the distance between firefly i and firefly j, which is stated as:  

rij=∑ |sign(Fi.𝑥k − Fj.𝑥k)|
n
k=1  (11) 

Let ε be a constant and m_iter be the number of iterations. The movement of firefly j which is attracted to 

another more attractive firefly i is determined by δ1 and δ2 , where  

δ1=[ β
0
×exp(-γ×rij)×rij ] (12) 

δ2=[ 𝛼m_iter×rand(0, ε) ] (13) 

Let F' be a firefly. The pseudocode of this procedure is shown in Algorithm 1.  

Algorithm 1:  Firefly movement of the PDFA  

1: pop_size → border; ∅ → D; 0 → dn, up ; 17: else if (F'.x𝐷t
≠ 0 && Fi.x𝐷t

≠0)  

2: for i = 0 : border - 1  18:  Fi.xDt
 → F'.xDt

 ;  

3: for j = 0 : border - 1  19: end for t  

4: if i ≠ j && i, j < border && Fi.I ≠ Fj .I  20: for d = 0 :  δ2  

5:           Fj → F'  ;  21: rand (1 , m) → F'.xrand (0 , n-1) ; 

6: for k = 0 : n-1  22: end for d  

7: if (Fi.xk ≠ F'.xk)  23: call the repair operator  

8: D.add(k) ; rij++ ;  24: if (no member of F  dominates F' ) 

9: end if  25: if (F'  dominates one or more members of F )  

10: end for k  26: discard members dominated by F' ;  

11: reorder the elements of D randomly ;  27: end if  

12: for t = 0 : min(δ1, D.size ( ))  28: F.add (F' ) ; update border ;  

13:              if (Fi.xDt
 equals 0 && dn < δ1 2⁄ )  29: end if  

14:                 0 → F'. xDt
 ; dn++ ;  30: end if  

15: else if (F'.x𝐷t
 equals 0 && up < δ1 2⁄ )  31: end for j  

16: Fi.xDt
 → F'.xDt

 ; up++ ;  32: end for i  



3.4 Repair operation 

An abnormal encode individual may be obtained after moving. Therefore, we develop the repair operator 

which is shown in Algorithm 2 to guarantee the feasibility of solutions.  

Algorithm 2:  Repair operation of the PDFA 

1: for t = 0 : m-1  

2: while ( firefly.FWt >  q
t
w || firefly.FVt > q

t
v )  

3: randomly remove a product from the vehicle t ;  

4: end while  

5: if ( q
t
w > firefly.FWt || qt

v > firefly.FVt )  

6: for k = 0 : n-1  

7: if ( firefly.𝑥sk
 = 0 && firefly.FWt + wsk

 ≤  q
t
w && firefly.FVt + vsk 

 ≤  q
t
v )  

8: Assign the product Nsk to the vehicle t ;  

9:  end if  

10: if (q
t
w - firefly.FWt  ≤  τ1  ||  qt

v - firefly.FVt  ≤  τ2 ) 

11: break ;  

12: end if  

13: end for k  

14: end if  

15: end for t  

3.5 Density Optimization 

When the degree of crowding increases, performance of the algorithm will significantly degrade and thereafter 

final solutions cannot be obtained within a reasonable time period. The density-estimation metric and the 

crowded-comparison operation in NSGA-II (Non-dominated Sorting of Genetic Algorithm-II) is a commonly 

used approach to cope with this problem. However, it consumes too much computational time in our tests 

while large-sized instances are conducted. Therefore, given that many grid-based evolutionary multi-objective 

optimization algorithms have demonstrated good performance to solve many-objective optimization problems 

(Yang et al. 2013), we use an adaptive grid algorithm to remove excessive fireflies from the crowded regions.  

When the population size exceeds Max_pop, a map of grid with high adaptability is generated to envelope the 

population. The grid is divided into g
3
 cubes and only one solution can be retained in each cube except the 

three solutions with the largest 𝐼𝑃, 𝐼m, and lowest 𝐼s respectively.  

3.6 Termination condition 

Repeat 3.3 - 3.5 until an iteration variable reaches the specified iteration limit Max_it.  

4. Algorithm Simulation 

4.1 Computational Instances and Parameter Settings 

To validate the proposed mathematical formulation and evaluate the performance of the PDFA, we conduct 

several experiments on different instances. We code the PDFA in C# and compile with Microsoft Visual Studio 

2012 compiler in a PC having 3.20 GHz Intel G3420 processor and 8 GB RAM.  

In the experiments, data are randomly generated for four refrigerated trucks and 3000 agricultural food 

products, where pj, wj, vj, sj, tj, tj, ∆jl, ∆jr, ∆jl
' , ∆jr

'  are generated with uniform distribution U(10,100), U(5,15), 

U(10,30), U(2,7), U(0,10), U( tj ,10), U(0, p
j

10⁄ ), U(0, p
j
10⁄ ), U(0.1, sj 10⁄ ), U(0.1, sj 10⁄ ). Let qw  = 

{3500,4000,4500,5500}, qv = {8000,8500,9000,10000}, T = {2,4,6,8}. For the system parameters, we set α = 

0.9998, β
0
 = 1, γ = 0.003, θ1 = 2, θ2 = 1, τ1 = 9, τ2 = 9, ε = 10, Max_it = 10000. Given that pop_size = 10-25 is 

fairly suitable for most applications and pop_size = 50 can handle almost any problem (Gandomi et al., 2016), 

we set Max_pop = 50. Given that balancing convergence and diversity is critical for the evolutionary multi-

objective optimization, we set different values of g to find the relations between them.  

4.2 Experimental Results 

Computational results are shown in Table 1. In this table, the columns “Fp
 best

”, “Fs
 best

”, “Fm
 best

” denote the best 

solution in terms of 𝐼p, the best solution in terms of 𝐼s, and the best solution in terms of 𝐼m respectively. To 

visualize the diversity of solutions, Figure 1. illustrates the Pareto front of six problem instances. Furthermore, 



Figure 2 depicts the convergence curves of the PDFA with Max_it = 20000 over the instance of No. 14 to 

further find the efficiency of the proposed algorithm.  

Table 1:  Computational results of PDFA for 14 instances  

No. n m g pop_size Fp
 best

 Fs
 best

 Fm
 best

 CPU(s) 

1 2000 1 3 13 34280,  1633, 251 17603, 749,  162 28672,  1981, 325 371 

2 2000 1 4 20 34948,  1624, 247 17631, 723,  166 28724,  1985, 327 751 

3 3000 1 3 12 36299,  1580, 270 16710, 612,  161 32745,  1833, 313 352 

4 3000 1 4 21 36643,  1679, 277 19998, 784,  177 30273,  1976, 350 898 

5 2000 2 3 14 65094,  3748, 548 38683, 2015,414 57442,  3532, 585 349 

6 2000 2 4 19 65135,  3731, 550 41953, 2102,429 59424,  3482, 591 872 

7 3000 2 3 13 70623,  3787, 581 45301, 2103,442 63620,  3424, 617 357 

8 3000 2 4 21 68428,  3402, 566 46542, 2143,451 62301,  3808, 658 817 

9 2000 3 3 11 86899,  5390, 868 63859, 3880,718 82905,  5715, 957 265 

10 2000 3 4 13 87303,  5417, 877 60019, 3578,699 83331,  5684, 963 518 

11 3000 3 3 11 100071,5750, 940 62956, 3346,717 92044,  5624, 1004 443 

12 3000 3 4 18 99830,  5517, 905 62372, 3236,708 90599,  5519, 1004 928 

13 3000 4 3 11 129924,8007, 1299 87899, 5147,1025 121931,8059, 1484 382 

14 3000 4 4 18 130041,7978, 1302 86264, 5031,1040 121112,8061, 1508 974 

  

(a) No.3  instance                             (b) No.4  instance                       (c) No.5  instance 

 

                (d) No.6  instance                             (e) No.11  instance                     (f) No.12  instance 

Figure 1: The Pareto front of 6 test problems for the PDFA.  

 

Figure 2: Convergence curves of the instance with n=3000, m=4, g=4, Max_it=20000.  



From Table 1, it can be obviously seen that the PDFA can solve the problem we proposed effectively in a 

reasonable time period. Figure 1 indicates that larger value of g leads to better diversity of solutions at the cost 

of computational time. Figure 2 clearly shows that the algorithm has a good convergence ability.  

5. Conclusions 

In the short-haul road transportation with one source and one destination, an optimized load plan is essential 

for food quality and profitability when agricultural food products are too many to be loaded all together by 

given refrigerated trucks. Therefore, this paper presents the modelling of tri-objective fuzzy agricultural food 

load planning problem that takes into account two factors of the agricultural food products: (1) different 

temperature demands. (2) fuzziness of profits and shelf lives. Specifically, profit and shelf life of each product 

are represented by triangular fuzzy numbers and defuzzifed by the GMIR method.  

To solve the proposed model, we have proposed the pareto-based discrete firefly algorithm, which has four 

major improvements compared with the basic firefly algorithm: (1) a greedy heuristic algorithm is used to 

generate initial population of fireflies to speed up convergence. (2) movement function of the firefly is 

redefined. (3) a two-phase repair operator is used to improve the quality of solutions. (4) the (μ+λ)-PAES 

algorithm and the 3-dimensional adaptive grid algorithm are used to accept, reject, and discard fireflies. 

Furthermore, experimental studies on a set of 14 instances show that the PDFA can solve the tri-objective 

fuzzy agricultural food load planning problem effectively and efficiently. Therefore, this algorithm is a useful 

tool to manage food cold chain intelligently. For example, it can be implemented and then integrated as a 

module of the decision support system for agricultural product supply chain which was proposed by Qiu et al. 

(2015). Furthermore, the model we proposed can be blended with the vehicle assign problem which was 

proposed by Barany et al. (2010) for more complex problems about agricultural food products delivery.  
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