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The use of biomass to produce renewable energy and new bio-materials can provide a sustainable and low-carbon alternative to traditional fossil fuels based technologies. This is one of the main research areas of the Process Engineering Research Team (PERT) at the University of Genova. The group applies a multiscale-based approach to evaluate new and traditional technologies through a complementary experimental and theoretical point of view. 
This approach is widely applied by the group in the study of Spouted Beds (SB) [1]. In contrast with traditional fluidization, the fluid flow enters the SB through a single central inlet orifice creating three well differentiated zones: the central core of the reactor through which air flows is the spout, the surrounding annular region is the annulus and the solids above the bed surface entrained by the spout and going down the annulus form the so-called fountain. This configuration promotes mass and energy transfer phenomena and makes them suitable for a wide range of industrial applications as drying of solids, coating or chemical reactors [2]. 
Several lab and pilot-scale SB have been developed by the group in collaboration with both academic and non-academic research teams to perform thermo-chemical conversion of biomass and other residuals as textile waste. A first lab-scale device (Figure 1a) working at room temperature permitted to optimise its fluid dynamic properties through the combination of experimental data [3] and validation of developed numerical models using Ansys Fluent© (Figure 2a) [4, 5] and MFIX [6]. In a successive step, the best fluid dynamic configuration led to the construction of a pilot plant (Figure 1b) able to treat 200 g/min of biomass with a potentiality of 200 kWth [7]. Again, the experimental activity was complemented with models using Aspen Plus© (Figure 2b) [8] and COCO [9] to optimise the operational conditions and maximise the target outputs. Recently, the pilot unit has been successively scaled up to design and construct a plant with 4x4 units (Figure 1c) combining pyrolysis and gasification reactions with a potentiality of 0.5 MWth. Its fluid dynamic properties have been optimized (Figure 2c) [10, 11] and now an extensive experimental campaign to maximise the production of H2 is ready to start. 
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Figure 1.  Experimental SB devices: (a) lab-scale; (b) pilot plant (20 kWth); (c) scaled-up plant (0.5 MWth) 
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Figure 2.  Results of simulation activities of the SB: (a) spouting phenomena using Ansys Fluent©; (b) distribution of gas products from the gasification of apple pruning using Aspen©; (c) residence time using Ansys Fluent©

The importance of valorising second-generation residues (i.e., by-products of valorisation technologies: char) has been identified and highlighted in all the developed systems. The different recovered biochar types (Figure 3a) have been used as an adsorbent for the removal of H2S (Figure 3b) [12] and CO2 (Figure 3c) [13] from exhausted gas.  
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Figure 3.  (a) apple pruning char; (b) breakthrough curves of H2S adsorption on char from the gasification of biomass; (c) CO2 uptake on chemically activated char from the pyrolysis of palm tree.

Within this framework, the present work aims to provide a description of all the above-mentioned research activities highlighting their most relevant outcomes and opportunities and providing an overview of the main challenges that the current state of the art is facing.
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Figure 5: Dependency of the char adsorption capacity on
the ash content.

The values of adsorption capacity are anyway
interesting and promising for a real scale application of
these materials, especially when compared with literature
data, summarised in Table VI.

Table VI: Adsorption capacities of some materials from
literature.

Material Adsorption Reference
capacity [mg/g]
ACRGM1 27.15 [14]
ACRBAAL 2043 [14]
Alumina Galipur 156 [14]
ACRBI 171 [14]
Zeolite ATZ <0.1 [14]
Sepiolite <0.1 [14]
Char from pyrolysis
of used wood 0.04 [22]
pellets

e B

A DO G

European Biomass Conference and Exhibition 2018 Proceedings (PROTETTO) - Adobe Acrobat Reader DC (64-bit)

9. e
[P

Cnar-A was e sample Wi Te Nignest aasorption
capacity, hence we chose it for further experiments.

We performed tests with different inlet
concentrations of H»S. to assess the influence on the
process.

Fig. 6 depicts three representative breakthrough
curves for the three studied inlet concentrations. As
expected, a higher concentration saturates the adsorbent
faster, so the outlet concentration becomes equal to the
inlet one in a shorter time.
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Figure 6: Breakthrough curves for different inlet
concentrations of Ha$

Table VII reports the saturation adsorption capacities
for the three inlet concentrations. It does not show a clear
trend. It can be concluded that, in the studied interval, the
inlet concentration of HaS does not significantly affect
the maximum adsorption capacity.
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