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1.Introduction
The modelling of flow and transport in porous media finds application in many fields of interest in chemical engineering such as packed bed catalytic reactors, carbon capture and storage, and battery modelling. Even though the nature of porous media is different in these applications – catalytic beads, rocks and electrodes – the modelling methodologies can be transferred from well established fields to new ones. Computational fluid dynamics (CFD) has been successfully employed for both macroscale and microscale modelling of porous media systems, thanks to the increasingly high performance computing resources available for research. Even though the simulations are feasible, the time required for their solution can take hours on multiple cores, so they cannot easily find application in multiscale modelling or optimization problems. The training of data-driven models can be useful to obtain fast models that can be employed without the need for new expensive simulations. Machine learning models can be trained for this purpose, in this work neural networks have been chosen since they can generalize well nonlinear problems and can be used when analytical correlations cannot be obtained for complex physical systems.
Neural networks must be trained on a dataset made by CFD simulations, which must explore the range of conditions of interest for generalization to new cases. The first step in the workflow [1] is the creation of a dataset based spanning the range of variation of the features that will be the input of the neural networks. A portion of the dataset is employed for training of the models, while another portion is used to test the generalization capability of the model itself. 
The porous media systems in this work are sphere packings, the physics studied is flow in laminar conditions and the transport of a scalar that is consumed on the grains surface. This system models the transport of a colloid filtered by the grains or equivalently an instantaneous reaction on the grains surface, but the transport equations solved are the same that describe other physical systems of interest in the porous media and chemical engineering community, like the lithiation and de-lithiation in Lithium-ion batteries. 
Depending on the prediction objectives and the input data it is possible to choose the most appropriate neural network architecture. If the objectives are numerical values, it is easily possible to transfer well established architectures from the data science community. Depending on the kind of input data, fully connected neural networks (FCNN) and convolutional neural networks (CNN) can be trained, in the first case the inputs are numerical values, instead in the second case the inputs are images (either 2D or 3D). For using FCNN it is necessary to hand-select the features which are the most effective for the prediction of the outputs, on the contrary CNN can grasp autonomously from the images the features to obtain an accurate output. 
If the data-driven model objectives are fields, so image-like outputs, the neural networks architectures are more challenging to conceive. Some recent works propose neural networks for the flow field prediction in porous media systems [4]. To the authors knowledge little was done to extend the use of these models beyond the flow prediction, and generally to geometric and flow-related parameters, like the permeability. The extension of these models to transport or, generally, to more complex physical phenomena could find applications in the above-mentioned fields of chemical engineering, where multiphase and/or reactive systems are commonly studied.
In this work a rigorous setup of the CFD simulations is presented, as well as the technical issues related to the creation of the dataset. After that both FCNN and CNN were employed for the prediction of the permeability and the filtration rate in porous media. Particular attention was paid on the hyperparameter tuning of the neural networks and on the effect of the dataset width on the prediction accuracy. The preliminary results for the prediction of concentration fields are presented.
 2. Methods
The geometries employed for the CFD simulations are sphere packings, these realizations were created by means of the discrete element method implemented in toolbox Yade and they differ for the mean diameter and the standard deviation of the grains size distribution. The CFD simulations were solved by using the finite volume method implemented in the open-source toolbox OpenFOAM. A grid independence study is performed in order to build the mesh, after that the Navier Stokes and the continuity equations are numerically solved [1]:


where U is the velocity,  is the density, is the viscosity, p is the pressure. A pressure drop between inlet and outlet is imposed as boundary condition for the pressure.
The fluid simulated is water (incompressible and Newtonian) at room temperature, the filtration simulation is a passive scalar transport governed by the advection diffusion equation:

where C is the concentration, and D is the diffusion coefficient. An inlet unitary concentration is set as boundary condition, and a null concentration on the grains surface.
The permeability is calculated from the CFD simulations results by the well-known Darcy’s law, and the filtration rate is calculated by a relation obtained by volume averaging of the advection diffusion equation [3]:

where F is the total flux,  the volume-averaged concentration, and V is the porous media volume. 
Concerning the data-driven models, the neural networks were trained and tested by using the Python’s libraries Keras, Tensorflow and Pytorch. The FCNN receive as input the mean diameter and the standard deviation of the distribution, the porosity, the pressure drop across the porous medium and the diffusion coefficient, for the prediction of the permeability and the filtration rate. The tuning of the model was performed varying the learning rate and the architecture, i.e. the number of hidden layers and the number of neurons per layer. Concerning instead the CNN, the input is the entire porous media geometry for the prediction of the permeability, instead for the prediction of the filtration rate a multi-input CNN was conceived, in fact, the geometry together with the operating conditions numerical value (pressure and diffusion coefficient) were the inputs to the network. For the tuning of these models we focused on a preliminary choice of the architecture, and then on the effect of the input scaling and of the learning rate. Since the creation of the dataset for the training of neural networks is the most computationally expensive step of the workflow, the minimum number of samples necessary to obtain a satisfactory generalization accuracy was explored training the networks with a decreasing number of samples. 
The neural networks models for the prediction of entire fields were elaborated starting from the multiscale convolutional neural network architecture developed by Santos et. al. [4], choosing the most appropriate features for the concentration field prediction. The pressure drop, the diffusion coefficient and the time of flight between the inlet and the outlet are the most effective features that lead the network to generalize accurately to new geometries.

3. Results and discussion
In Figure 1 two contour plots of the flow field and the concentration field are proposed for a sample of the dataset. In the concentration field contour, it is possible to appreciate the boundary conditions set for the solution of the advection diffusion equation. The time required to obtain a complete sample is around 15 hours, considering the creation of the mesh, the Navier-Stokes and the advection diffusion equation solution on OpenFOAM in single core.
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Figure 1.  Contour plot of the flow field (A) and the concentration field (B)
The number of CFD simulations to be solved to obtain an accurate data-driven model is a question we focused in this study. In Figure 2 the average error and the maximum error on the test set is shown as a function of the dataset width. Using the complete dataset, the permeability was predicted with an average error lower than 2.5%, the filtration rate was predicted with an average error lower than 5%. These results can be achieved with a dataset of at least 100 CFD simulations. The time required for the training of the FCNN takes about 30 minutes, the training of the CNN on the full dataset take around 4 hours on GPUs nVidia Tesla V100. Instead, the prediction of a new sample is almost instantaneous.
[image: Chart, line chart

Description automatically generated][image: Chart, line chart

Description automatically generated]B
A

Figure 2.  Average error on the test set for the prediction of the permeability (A) and the filtration rate (B)
In Figure 3 is reported a preliminary result on the prediction of the concentration field on a sample of the bidimensional dataset presented in our previous work [1]. It is possible to notice that the field is qualitatively well predicted by the CNN. 
4. Conclusions
The use of neural networks is promising in porous media modelling, since the data-driven models trained can rapidly predict new inputs, so they can find application in multiscale modelling and optimization problems. For this reason, the models must be tuned in order to acquire the highest generalization capability on new samples, the choice of the best hyperparameters and the construction of a dataset wide enough are essential to obtain a good data-driven model. Even though the training of FCNN is less expensive and the predictions are quite accurate, CNN represent a powerful tool for future applications, in fact, for more realistic geometries it would be hard if not impossible to hand select the most effective geometrical features for the output predictions. 
Our objective for the future is to develop a workflow for the prediction of entire fields for complex physical phenomena in porous media such as the transport of a chemical species, in this case it is not sufficient to provide the neural network with only the geometry since the boundary conditions and specifically flow direction play an important role. 
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Figure 3.  Prediction of the concentration field by MSNet [4].
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