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Abstract
Monoclonal antibodies (mAbs) are valuable but expensive pharmaceuticals. Their production involves cell cultivation, often utilizing Chinese hamster ovary (CHO) cells, and purification. Cell cultivation is costly, and various methods have been proposed to enhance efficiency, including improving host cell lines, operating conditions, and modes. Process models are crucial for assessing these alternatives to narrow down the combinations of available options. Recent studies have introduced various models but face challenges in capturing dynamic behavior and biological changes. Lactate is a major system component, which can be affected by metabolic shifts from production to consumption. Accurately modelling such shifts is important because of the potential impacts on cell growth and death, and the subsequent release of process-related impurities. Experimental data from pilot-scale cell cultivation using standard and highly productive CHO cell lines were used. A data-driven investigation was conducted to identify critical factors associated with variations in cell metabolism. The insights gained from the employed principal component analysis and data clustering were used to suggest more representative formulations of metabolism-relevant parameters in the mechanistic models. The updated mechanistic models showed higher robustness and accuracy in modeling lactate shifts. A sensitivity analysis was subsequently carried out to show the impact of changes in process design on drug price flexibility. The developed modeling framework can be used towards achieving more efficient process design and lower production costs.
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1 Introduction
Monoclonal antibodies (mAbs) are important active pharmaceutical ingredients despite their high drug prices. The mAb production process involves cell cultivation, using mainly Chinese hamster ovary (CHO) cells and downstream purification units. Cell cultivation is one of the most expensive steps with many suggested developments to improve process efficiency, including modifying host cell lines, reactor types, operating strategies, and modes. Process models serve as the fundament to screen and evaluate numerous alternatives comprehensively. There have been many modeling works (Reddy et al., 2023) and recent studies include Monod-type mechanistic models (e.g., Badr et al., 2021), CFD-based bioreactor models (e.g., Farzan & Ierapetritou, 2018), and hybrid-modeling with data-driven components (e.g., Okamura et al., 2022). However, these contributions struggle with different aspects of modeling dynamic behavior and changes in the associated biological phenomena. Describing the lactate metabolic shifts from production as metabolites to consumption as nutrients is an important modeling challenge. This is because of the potential impacts of lactate on cell growth and death, and the subsequent release of process-related impurities such as host cell protein (HCP), which can affect the final product quality and safety.
This work proposes a modeling approach that makes use of data-driven techniques to compensate for the gap between the experimental data and the process knowledge towards the development of more representative mechanistic models. The focus was to improve the modeling accuracy of lactate concentrations by depicting the changes in cell phases, which led to the lactate metabolic shifts. Principal component analysis (PCA) followed by linear regression (PCR) and clustering techniques were used to identify critical factors contributing to differences in cell phases. Based on the identified phases, the mechanistic cell cultivation model was updated. Then, dynamic simulation of different operating conditions was conducted, and cost of goods (COG) was evaluated based on the performance. The evaluated COG was used to estimate potential impacts of changes in process design on drug price flexibility.
2 Methods
2.1 Experimental data acquisition
CHO cell cultivation data were obtained from the available data pool of the Kobe GMP consolidated laboratory of the Manufacturing Technology Association of Biologics in Japan. Four experiments with different cell lines including CHO-MK 9E-1 cells (Horiuchi, 2019), operating modes, and scales were used for the initial analysis using PCA. Three experimental runs (i.e., Experiments (A)–(C)) with CHO-MK 9E-1 cells in the 50 L fed-batch mode were used for the clustering and mechanistic model update. Experiments (A) and (B) were conducted in orbitally-shaken-tank reactor while Experiment (C) used stirred-tank reactor. Dissolved oxygen (DO) was downshifted from 50% to 10% to maintain cell viability for longer durations. The pH and temperature were controlled and maintained at set values. Daily offline measurements included viable cell density, versatility, concentrations of nutrients and metabolites. DO, pH, temperature, pressure, solution weight, sparging rates of air and oxygen, and agitation rate were measured online every minute. In Experiments (A)–(C), the lactate metabolic shift was observed.
2.2 Mathematical models
2.2.1 Cell cultivation model and simulation
2.2.1.1 Fundamental mechanistic cell cultivation model including impurity generation
The fundamental model to describe cell cultivation including process-related impurity generation developed by Badr et al. (2021) and Okamura et al. (2022) was initially applied. The model involves a set of mass balance equations for system components, including solution volume and density/concentrations of viable cell, mAb, glucose, lactate, dead cell, HCP, and DNA as shown in Eqs. (1)–(8). Specific cell growth and death rates are described in Monod-type equations.
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where,  [L],  [cells L–1],  [g L–1],  [mmol L–1],  [mmol L–1],  [cells 
L–1],  [mg L–1],  [mg L–1] are the solution volume, density/concentrations of the viable cells, mAb, glucose, lactate, dead cells, HCP, and DNA.  [L h–1] and  [mmol L–1] are feed flow rate and glucose concentration of fresh media, respectively.  [h–1] and  [h–1] are specific cell growth and death rates, respectively.  [g cell–1 h–1] and  [mmol cell–1 h–1] are specific production rates of mAb and lactate, respectively.  [cells mmol–1] and  [mmol cell–1 h–1] are specific glucose consumption for cell growth and cell maintenance, respectively.  and  are the rate constants of the dead cell lyses and the impurity dissolution.  [mg cell–1] is the mass of impurity  released from a lysed dead cell, where  includes HCP and DNA. The previous works used  as a constant which made it difficult to represent the lactate metabolic shifts as cells changed their behavior. Therefore, updating the representation of  was required.
2.2.1.2 Data-driven analysis
To identify critical factors representing changes in  within the experiments under investigation, data-driven modules were introduced. In the analysis, PCR and clustering techniques were used. First, PCR was used to predict changes in lactate concentrations. The PCR module gave updated predictions of lactate concentrations using the input from the fundamental cell metabolism model predictions along with online measurement data. The updated lactate predictions were then used as inputs to the impurity generation module. Analysis of the contribution to variance of each principal component (PC) and the correlations between system components and measurements was used to investigate the variations in cell behavior and the underlying conditions. Second, HDBSCAN clustering (Campello et al., 2013) was applied to offline and online measurement data to automatically identify shifts in phases between different cell behaviors. The sensitivity of the analysis to the minimum cluster size  was investigated. The results of the clustering were used to identify the critical cultivation conditions corresponding to the changes in cell behavior.
2.2.1.3 Updating the mechanistic model
Based on the insights obtained from the data-driven analysis, alternative formulations of  were suggested for each identified cell phase. The updated model was fitted to Experiments (A) and (C). The estimated parameters in Experiment (A) were used to predict the performance of Experiment (B).
2.2.2 Dynamic simulation
Using the developed cell cultivation model, dynamic simulation was conducted. Scenarios with different cell lines, reactor types, and feeding strategies with varying feed flow rates and feed start timing were explored. For CHO-MK 9E-1 cell lines, different timing for DO downshifts was also explored. Scenarios were categorized into five groups depending on the combination of used cell lines, reactor types, and explored variables. The final HCP concentrations  [g L–1] and the total mAb production  [g] were used as indicators of cell cultivation performance, where  [h] is the duration of cultivation. 
2.2.3 Process evaluation model
An integrated index  [–] combining the two objectives was defined in Eq. (9). Process options maximizing  were selected for further analysis.
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Then, COG [USD g-mAb–1] was evaluated for operating conditions maximizing  according to Eq. (10). The formulation of COG was based on previous research works (Klutz et al., 2016; Yang et al., 2019). The operating cost of cell cultivation  [USD] was defined as the sum of the annual costs of media  [USD], single use reactor bag  [USD], electricity  [USD], labor , [USD] water for injection  [USD], waste water treatment  [USD], and waste plastic treatment  [USD]. The operating cost of downstream and capital costs were estimated based on the ratio to cell cultivation operating costs according to previous research works (Yang et al., 2019).
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2.2.4 Drug price analysis
Based on the calculated maximum and minimum COG within the investigated scenarios in each group, the potential drug price flexibility was analysed. In this work, drug price  [USD g-mAb–1] was assumed to be a summation of COG and margin to cover other costs and profits  [USD g-mAb–1]. Potential drug price flexibility  [%] was defined as a ratio of the difference between the cases with maximum and minimum COG to the maximum COG (Eq. (11)). Japanese Yen (JPY) was used in the analysis.
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3 Results and discussion
Through the PCA, it was identified that the variances in environmental factors such as DO, temperature, and pH were important to explain the variances of specific cell growth and death rates. In the clustering analysis, results showed that DO gave the strongest separation, and similar trends were observed in all the three experiments. The more detailed description is available in the previous paper (Badr et al., 2023). Based on the insights, regions of varying DO levels were analyzed separately in terms of cell metabolism behavior. The impact of changes in nutrient levels were also investigated in combination with changes in DO levels. The observation of glutamine concentration profiles and the experimentally determined  showed that changes in  corresponded well to changes in glutamine concentration, but only under high DO conditions. The hypothesis was that at high DO levels, deficiencies in glutamine could promote the consumption of lactate to keep the TCA cycle running. Accordingly,  was described as a function of glutamine concentration  at high DO,  [%], and as a constant at low DO,  [%] (Eq. (12)). Specific cell growth and death rates were updated to reflect the impact of lactate consumption. The modified model was able to predict lactate, mAb, and HCP concentrations in Experiment (B) with high accuracy as shown in Figure 1. The average R2 for all the system components in the model was 0.802.
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Figure 1. A part of prediction results of Experiment (C). Shaded areas represent high DO levels.
Figure 2 (a) shows a part of COG evaluation results for optimal solutions identified within the investigated scenarios of each group assuming the use of a 2000 L reactor with an overall annual production demand of 50 kg and a downstream yield of 75 %. It was shown that media cost was one of the dominant factors in COG, which was consistent with the previous works (Badr et al., 2021). As an expanded investigation of Group 4 in Figure 2 (a), the potential drug price flexibility was explored as shown in Figure 2 (b). The map can help to quantitatively evaluate the flexibility for the given required margin and mAb production demand. In the explored range with different operating strategies and reactor volumes, the maximum potential price flexibility was 90.6 % while the minimum was 0.0926 %. The figure shows a marked reduction in potential drug price flexibility as annual production demand approaches production capacity limits.
[bookmark: _GoBack][image: ]
Figure 2. Results of (a) COG evaluation and (b) potential drug price flexibility for given drug price and annual mAb production.
4 Conclusions
This work demonstrated how data-driven insights were used to update mechanistic cell cultivation models and quantitative assessment of the changes made to cell lines and operating parameters on the potential flexibility of drug pricing. The evaluation findings can help with effective process design using the currently available options and can also be extended to serve as a roadmap for future advancements toward the desired cost flexibility. By using the drug price as a mediating variable connecting different scales, the work would help quantify the effect of improvements in cell and process features on society-level goals like cost-effectiveness and drug accessibility.
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