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The use of Wireless Sensor Networks (WSNs) in support of Dynamic Risk Assessment regarding oil spills still lacks a proper integration. WSNs enable prompt responses to such emergencies through an appropriate inspection, thus avoiding possible larger disasters. This work proposes a methodology for the setup of a WSN as a Leak Detection System in which a Fusion Center collects sensors’ binary decisions and provides a more reliable decision about the presence/absence of a leak. The detection rules are based on statistical signal processing techniques, and the choice of the optimal thresholds is made through the optimization of three objective functions tailored to the Oil&Gas industry. Detection performances are assessed in terms of the Receiver Operating Characteristic (ROC) curve. The case study is the Goliat FPSO, a production platform located in the Barents Sea, and related requirements dictated by Norwegian authorities to prevent oil spills. The considered WSN monitors the subsea manifolds through passive acoustic sensors.
Introduction
Oil spills are known to cause a highly negative impact on the safety of offshore workers, the environment, and productivity. The early detection of a spill is crucial to limit its potential consequences. A Leak Detection System (LDS) is reliable if it can provide a high rate of correct detections ensuring a limited rate of false alarms, thus avoiding unnecessary production shutdowns and costly Remotely Operated Vehicles (ROV) inspections. Different technologies, among which the use of passive acoustic sensors, are nowadays available and are used to monitor the external underwater environment and the process conditions (Adegboye et al., 2019; Baroudi et al., 2019). Passive acoustic sensors have shown a high level of accuracy enabling the possibility to localize the spill source. This can be done without the need to install the sensors near the leaking component (which is a limitation of many other LDSs). Also, this technology can detect all hydrocarbon fluids. Acoustic sensors are easy to install and are appropriate for retrofitting. These properties make this LDS among the most used. The importance of a reliable LDS creates the need for a framework that integrates it into the Dynamic Risk Assessment (DRA). This is possible as the use of a distributed Wireless Sensor Network (WSN) can provide real-time monitoring of the subsea environment increasing the level of knowledge on the system allowing a more accurate DRA (Paltrinieri et al., 2014, 2019a). So far, the application of WSNs in the Oil&Gas industry has only been introduced (Paltrinieri et al., 2019b). This work gives a methodology for the setup of passive acoustic sensors in a WSN used for monitoring subsea templates and discusses its performances.
Signal Model
The WSN aims at detecting possible oil spills, so the problem is formalized as a binary hypothesis testing with the null hypothesis  corresponding to a non-spill scenario, and the alternative hypothesis  corresponding to a spill scenario. For the generic th sensor, the two following different signal models are assumed for each hypothesis:
	
	(1)


where:
·  is the signal (sound pressure) received at the th sensor where ; 
·  is a Gaussian random variable representing the emitted signal caused by the spill;
·  is Additive White Gaussian Noise having the same power  for any sensor;
·  is the Amplitude Attenuation Function (AAF) which only depends on the distance between the position  (th sensor position) and  (leak position).
The AAF is treated deterministically and represents the loss of the acoustic intensity level and accounts for seawater absorption and geometrical spreading (Stojanovic, 2006):
	
	(2)


From which, the AAF can be obtained:
	
	(3)


where  is the seawater absorption coefficient in ,  and  (reference length) are in meters, and  is the spreading coefficient. The absorption coefficient  is obtained using the Francois & Garrison equation (Francois and Garrison, 1982a, 1982b). The speed of sound (required by Francois & Garrison) is obtained using the updated Chen & Millero equation (Wong and Zhu, 1995). 
Wireless Sensor Network Model
The modeled WSN is made of  passive acoustic sensors monitoring the external environment (as shown in Figure 1). The th sensor, with a given sampling frequency, senses the received signal amplitude  and sends to a Fusion Center (FC) its binary local decision on whether the sensed amplitude is caused by a spill. The choice of local binary decision is due to the energy constraints imposed by the use of a WSN (Shoari et al., 2016), such constraint will also reduce operating costs as only one bit is transmitted when a spill is detected. Finally, the FC takes a global decision  on the occurrence of the spill based on the received ’s.
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Figure 1: Wireless Sensor Network Model
Detection Rules
Each sensor performs an Energy Test, which is Uniformly Most Powerful for this application, where the signal energy  is compared to a threshold  to assess its decision (Ciuonzo and Salvo Rossi, 2017):
	
	(4)


As the statistics of the received signal is known, the Local Probability of Detection () and Local Probability of False Alarm () for the th sensor can be defined as follows:
	
	(5)

	
	(6)


where  is the complementary cumulative distribution function of the standard normal random variable:
	
	(7)


The proposed method assumes the Signal-to-Noise Ratio  at  from the source to be known.
The Counting Rule is used as Fusion Rule by the FC because of its simplicity which suits the constraint of low processing costs. This rule uses the local decisions  as an input and has the following form:
	
	(8)


This indicates that the FC counts the number of sensors detecting the spill and compares it to a threshold . In case the sum is equal or higher than the threshold, the FC sends an alarm.
Threshold Selection
Three different optimality criteria based on the Receiver Operating Characteristic (ROC) curve will be analyzed (Liu, 2012):
· Youden Index ():
	
	(9)


· Closest-to-(0,1) ():
	
	(10)


· Concordance Probability ():
	
	(11)


These definitions are applicable both for the sensors and the FC with the appropriate substitutions ( is  and ;  is  and ;  is  and ;  is  and ). The selection of the optimal threshold  for the th sensor is carried out through a grid search where one optimal value is found for each one of the criteria. More specifically, the metrics in the optimality criteria are computed referring to average performances with respect to the hotspot positions , where . This is necessary as the Probabilities of Detection (both local and global) depend on the leak position. The hotspots are those components of the subsea production system that, in case of failure, would be the source of a spill. Also, it is assumed that the selected hotspots have the same failure rate and their spills cause signals having the same power . Therefore:
	
	(12)


where, for the th sensor,  is the chosen local threshold (using one of the criteria),  and  are its average performances and  is  when the leak source is the th hotspot by using .
The choice of the optimal threshold at the FC follows the local threshold choice and uses the same procedure:
	
	(13)


where  is the chosen global threshold. and  are the values of Global Probability of Detection and Global Probability of False Alarm, where  means that the th hotspot is modeled as the leak source, and the bar denotes the average probability.  and  are obtained via Monte Carlo Simulation requiring the simulation of the local decisions using the previously chosen local thresholds.
Case Study – Goliat FPSO
[bookmark: _GoBack]The Goliat FPSO is an offshore platform located in the Norwegian Barents Sea equipped with a multi-template Subsea Production System. Each template can host up to four wellheads and the manifold. The latter is monitored by three passive acoustic sensors to detect the presence of an oil spill (Bjørnbom, 2011; Røsby, 2011). For an overview of the subsea equipment, the reader could refer to the specific literature (Bai and Bai, 2012).
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Figure 2: Scheme of Goliat’s subsea template: the grey elements are the structure and the Christmas Trees, the blue lines are the main streamlines, the green dots are the sensors, and the red dots are the hotspots
20 hotspots (connections and valves) were recognized in the manifold. Hotspots and sensors are assumed to be at the same height. The following parameters are used for this case study:
Table 1: Parameters used to simulate the spill’s sound emission and its Amplitude Attenuation Function
	Parameter 
	Value
	Note

	
	 
	

	Noise Variance 
	
	Normalized

	Reference Frequency
	
	(Eckert et al., 1993), used for AAF

	Temperature
	
	(Institute of Marine Research, 2020), used for AAF

	Salinity
	
	(Institute of Marine Research, 2020), used for AAF

	Depth
	
	(Bjørnbom, 2011), used for AAF

	pH
	
	(Vetrov and Romankevich, 2004), used for AAF

	Spreading Coefficient 
	
	(Stojanovic, 2006)


Results
The values of  averaged among all hotspots show a mean attenuation of  and are the following:
Table 2: Averaged Signal-to-Noise Ratio at the sensors
	Sensor 1 
	Sensor 2
	Sensor 3

	 
	
	



At sensor-level (Table 3 and Figure 3), the optimization of  results in local thresholds with values distant from those obtained optimizing  or  which tend to be similar. When  is used, in fact, the thresholds are oriented towards smaller values of  and . The values of Area Under the Curve (AUC) of the averaged ROC curves among the three sensors have a standard deviation equal to , this justifies the similar average performances among the sensors when tuned using the same objective function.
Table 3: Local threshold selection’s results 
	Sensor
	Value of Optimized Function
	Threshold
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Figure 3: Averaged local ROC curves displaying the optimal points according to the different applied criteria
At FC-level, results were obtained with  Monte Carlo runs (Table 4 and Figure 4). The performance at a given threshold varies according to the objective function used for the sensors. When sensors are tuned using , the optimal global threshold is divided between the value  if  and  are optimized, and  if  is optimized. When sensors are tuned using  or , the optimal global threshold is always  using any optimization criterion. The highest value of AUC at the FC is obtained when sensors are tuned using .
Table 4: Global threshold selection’s results 
	Function used for Sensors 
	Value of Optimized Function
	Threshold
	
	

	Youden Index ()
	
	
	
	

	
	
	
	
	

	Closest-to-(0,1) ()
	
	
	
	

	Concordance Probability ()
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Figure 4: Averaged global ROC curves displaying the optimal points according to the different applied criteria
Conclusions
It is clear how the choice of the objective function at sensor-level is fundamental to determine the performances at FC-level for a given global threshold. The case study showed how tuning the sensors using the Youden Index increases the global AUC and orients the performances towards lower values of false alarm rate of the LDS, which may be preferable to avoid shutdowns. The optimal global thresholds show a similar behavior on the ROC space if compared to the results obtained when computing the optimal local thresholds. However, the tendency of the Youden Index to generate thresholds having a lower probability of detection and false alarm with respect to those generated by the other two indexes is less evident at FC-level since only  points can be placed on the ROC space. The three objective functions can also be adapted and corrected using coefficients to fit specific applications and requirements. The proposed methodology shows how important the number of sensors and their positioning can be and how the network performances heavily rely on the signal model. For this reason, more information regarding the statistical properties of the signal and other contributions that influence the AAF should be integrated if available. These factors can be signal perturbations, interferences, ambient noise, and oceanic phenomena (currents, tides, internal waves, etc.). This work is a step towards the integration of subsea monitoring using WSNs with Risk Assessment techniques necessary to localize the hotspots and to select the most appropriate objective function. 
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