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In recent years, the number of people embarking on leisure-travel trips has increased rapidly. Consequently, 
travel patterns have changed depending on the type of leisure trip. However, accurately establishing non-daily 
travel data using conventional travel diary surveys with the existing self-survey method is impossible. A possible 
solution is the use of social media, which is widely used, as a data source. Users upload various posts describing 
their leisure travels on social media, which include both structured data, such as posting date and location 
information, and unstructured data, such as content and images. The purpose of this study was to analyze the 
relationship between individual behavior and green transportation during leisure travel using location-based 
social media data. Social media data were collected using a web crawler and annual transportation data were 
collected from the green transportation promotion areas in Seoul, Korea. A text mining technique was applied 
to the content of the posts to analyze the types of leisure for each individual. The text data in the contents were 
classified in detail by applying latent Dirichlet allocation (LDA), a topic modeling technique. Subsequently, to 
identify individual travel behavior, spatial analysis was performed by comparing the location information of the 
post with the usage of various transportation by leisure type. Consequently, four leisure types, i.e., exercise, 
tourism, rest, and social, were identified to be prevalent in the northern, central, southern, and eastern regions. 
Social and tourism-type leisure activities involved the use of shared bicycles and public transport. In contrast, 
people pursuing exercise-type leisure activities tended not to use shared bicycles and public transportation. The 
results of this study indicate that there is a correlation between activity type and choice of transportation. 
Identifying the purpose of travel can help strengthen the connection with green transportation. 

1. Introduction 
Automobiles emit large amounts of air pollutants, and the global warming caused by greenhouse gas emissions 
from vehicles has become a serious social problem. Integrating sustainability into transportation modes has 
become a worldwide target, especially with the sharp increase in the urban population and trips (Bencekri et al., 
2021). Accordingly, various studies have been conducted in the field of green transportation. Ku et al. (2021) 
analyzed the benefits of green transportation reflecting the wider impact based on the origin/destination data of 
shared bicycle users. Choi et al. (2021) demonstrated that personal mobility (PM) enables faster and greener 
movements in complex downtown Seoul. In several cities, eco-friendly policies have been introduced, and the 
number of green transportation facilities is increasing. The characteristics of urban space and travel behavior 
are closely related and influence each other. Spatial characteristics result in certain modes of transportation 
dominating. Moreover, the preference for a certain mode of transportation in certain areas affects the area itself. 
For instance, in India, the poor depend heavily on non-motorized transportation, such as walking and cycling, 
as their primary mode of travel. This could reduce their employment potential in cities concentrated in the Central 
Business District (Srinivasan and Rogers, 2005). Similarly, Lee et al. (2014) found that urban baby boomers 
make more recreational non-motorized transport and social, utilitarian, and transit commuting trips. Most of 
these differences seem to be primarily a result of the urban setting and not the particular preferences of boomers 
living in urban settings. Kwak et al. (2021) proposed that the government could produce more effective results 
by considering local characteristics to revitalize eco-friendly transportation. In other words, if the regional 
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characteristics and travel behavior of the region are identified, the connection between eco-friendly means of 
transportation can be strengthened and traffic volume using eco-friendly means can be increased.  
Precise tracking of traffic is not possible with conventional travel diary surveys using the existing self-survey 
method. To understand specific travel patterns, unstructured data, such as those found on social media, must 
be analyzed instead of structured data. Recently, many people worldwide have been using social media. Users 
upload various posts on their leisure travel history to social media. Social media posts include both structured 
data, such as posting date and location information, and unstructured data, such as content and images. Using 
social media data, travel patterns can be analyzed. For instance, Georgiou et al. (2015) showed that drivers’ 
emotions may have an impact on the observed social discussion volume using signals such as humorous 
remarks, swearing, frustration, and occasional warnings in their social media content. Therefore, this study aims 
to track leisure travel using social media data and identify characteristics related to the use of eco-friendly 
transportation by analyzing the relationship between type of leisure (purpose of travel) and traffic volume change 
(means of travel). 

2. Methodology 
First, data from Instagram posts is collected using web crawling techniques. Text data of posts is applied with 
text mining, and the location information of the post is mapped to coordinates. Pre-processed text data is 
assigned topics for each post by applying LDA. After that, the space distribution for the topics of the posts and 
the usage of green transportation by district are analyzed. Figure 1 illustrates the flow of this study. 

  

Figure 1: Framework of study 

2.1 Social Media data 

Instagram, a mobile photo capturing and sharing service, has emerged as a popular new data-sharing medium 
in recent years (Hu et al. 2014). Instagram offers users a post including up to 2,200 text characters, the ability 
to include multiple images or videos in a single post and the option to tag content with searchable hashtags 
(Carpenter et al., 2020). Individual posts typically pertain to location, date, time, content, comments, and likes. 
To efficiently collect social media data, information on posts was collected using a web crawling framework, 
Selenium. Using Instagram's hashtag function, 5,000 posts were crawled with the keyword 'Fortress Wall of 
Seoul', which is green transportation promotion area in Seoul, South Korea. The location name variable was 
converted into coordinate form by calling Kakao API key to extract latitude and longitude. Only posts uploaded 
in Fortress Wall of Seoul were extracted using the clip function, one of the GIS tools, and as a result, 1,973 data 
points were collected from 2020 to 2021. Considering the importance of data preprocessing for effective text 
data analysis, the text data were tokenized on a word basis, and the document was divided into word units. The 
words extracted in this manner were normalized by rule-based integration, case-insensitive integration, 
elimination of stopwords, and stemming. Subsequently, the Korean preprocessing package was used to ensure 
correct spelling. The structure of the social media data is shown in Table 1. 

Table 1: Components of social media data 

Components Description Property 
Upload id ID of user who uploaded the post TEXT 
Location name The location where the post was created or artificially specified by the user TEXT 
Date The date when user uploaded the post (year-month-day) DATE 
Time The time when user uploaded the post (hour-minute-seconds) TIME 
Content The content the user has written in the body TEXT 
Comments The content of the comments in the post TEXT 
Likes The number of people who clicked "Like" on the post NUMBER 
Kusmawan et al. (2014) used SNS messages to monitor the traffic conditions on a road by computing the degree 
of traffic congestion. Alkouz and al Aghbari (2020) proposed SNSJam, a system for detecting and predicting 
road traffic jams using Instagram data sources. In other words, it resulted in an effective method of collecting 
traffic information based on unstructured data and analyzing travel behavior through SNS. 
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2.2 Latent Dirichlet Allocation (LDA) 

LDA is a representative algorithm for topic modeling, which is the process of identifying topics in a set of 
documents. In this study, topic modeling was performed under the assumption that the topic distribution of LDA 
is not fixed, and is randomly generated from the Dirichlet distribution. After extracting the topic distribution for a 
specific document, the topic value was randomly extracted based on the length of the document, and words 
were randomly generated from the word distribution corresponding to the topic. LDA performs topic classification 
of documents in the following manner: LDA receives the number of topics 𝐾𝐾 under the assumption that they are 
distributed over all documents 𝑀𝑀 of topics 𝐾𝐾. Therefore, the user must assign the number of topics 𝐾𝐾, which is 
a hyperparameter. LDA randomly allocates one of the topics 𝐾𝐾 for every word in every document. Consequently, 
each document has a topic, which, in turn, has a word distribution; this result will be inaccurate because it is 
randomly assigned. When LDA allocates topics for each word, it assumes that each word 𝑤𝑤 in a document is 
assigned to the wrong topic, but all other words are assigned to the correct topic. Under this assumption, LDA 
reassigns the topic of the word on the basis of two criteria: the ratio of the words corresponding to topic 𝑇𝑇 among 
the words in document 𝐷𝐷 and the ratio of all documents with word 𝑤𝑤. By repeating this process, the assignment 
of topics to all words is gradually unified into a convergent state. The graphical model representation of LDA is 
shown in Figure 2. The probability that topic 𝑧𝑧𝑑𝑑,𝑖𝑖 of 𝑖𝑖-th word of the 𝑑𝑑-th document is assigned to the 𝑗𝑗-th is given 
by Eq(1): 

𝑃𝑃�𝑧𝑧𝑑𝑑,𝑖𝑖 = 𝑗𝑗�𝑧𝑧−𝑖𝑖 ,𝑤𝑤� = 𝑛𝑛𝑑𝑑,𝑘𝑘+𝛼𝛼𝑗𝑗
∑ �𝑛𝑛𝑑𝑑,𝑖𝑖+𝛼𝛼𝑖𝑖�𝐾𝐾
𝑖𝑖=1

×
𝑣𝑣𝑘𝑘,𝑤𝑤𝑑𝑑,𝑛𝑛+𝛽𝛽𝑤𝑤𝑑𝑑,𝑛𝑛

∑ �𝑣𝑣𝑘𝑘,𝑗𝑗+𝛽𝛽𝑗𝑗�𝑉𝑉
𝑖𝑖=1

= 𝐴𝐴𝐴𝐴   (1) 

where, 𝑛𝑛𝑑𝑑,𝑘𝑘 is frequency of words in the 𝑑𝑑-th document assigned to the 𝑘𝑘-th topic, 𝑣𝑣𝑘𝑘,𝑤𝑤𝑑𝑑,𝑛𝑛 is frequency of 𝑤𝑤𝑑𝑑,𝑛𝑛 
assigned to the 𝑘𝑘-th topic in the entire corpus, 𝑤𝑤𝑑𝑑,𝑛𝑛 is the 𝑛𝑛-th word in the 𝑑𝑑-th document, 𝑉𝑉 is total number of 
words in the corpus, 𝛼𝛼 is frequency of words in the 𝑑𝑑-th document assigned to the 𝑘𝑘-th topic, 𝛽𝛽 is dirichlet 
distribution parameter for creating word distributions in topics, 𝐴𝐴 is the degree of association that the 𝑑𝑑-th 
document has with the 𝑘𝑘-th topic, 𝐴𝐴 is the degree of association that 𝑤𝑤𝑑𝑑,𝑛𝑛 has with the 𝑘𝑘-th topic. 

 

Figure 2: Graphical model representation of LDA 

Zhao et al. (2020) adapted LDA to discover representative and interpretable activity categorization and latent 
activity patterns from transit smart card data in an unsupervised manner. In this study, individual posts on 
Instagram were considered as a single document and topics related to leisure activities were extracted. 
Subsequently, each document was allocated a distribution and weight of topics, which were entered as features 
of the document. 

2.3 Influencing Factor in Travel Behavior 

Various studies have been conducted to determine the factors that influence travel behavior. Kamargianni et al. 
(2015) studied transport network characteristics, such as the availability of a separate bicycle path, bicycle 
parking spaces, and sidewalk width, which significantly affected the choice of active transport in teenagers. The 
results indicated that a green lifestyle increases the probability that the individual chooses to travel by bus, while 
an active lifestyle increases the probability that the individual chooses active transport (walking and cycling). 
Saelens et al. (2003) suggested that residents from communities with higher density, greater connectivity, and 
more land use reported higher rates of walking/cycling for utilitarian purposes than low-density, poorly 
connected, and single land-use neighborhoods. In other words, the choice of transportation modes depends on 
the region and affects each person in different ways, depending on individual characteristics. However, the 
analysis of travel patterns based on existing structured data has limitations in estimating the purpose of travel 
and specific travel behavior. Nondaily travel data can be obtained from social media data, and activity types can 
be identified using unstructured data analysis. Therefore, this study observed its characteristics through 
geographical visualization and unstructured data analysis by matching the change in traffic volume by 
transportation modes and the number of leisure activities that appear locally. 
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3. Results 
This section presents the results of the topic modeling and spatial analysis performed to establish a region-wise 
correlation between the type of leisure activity and the use of green transportation modes.  

3.1 Latent Dirichlet Allocation (LDA) 

In this study, LDA was used in the GenSim library developed in Python. A total of 1,973 pre-processed Instagram 
posts were used to extract topics using Gibbs sampling-based LDA algorithms, and the posts were reclassified 
according to the extracted topics. Four topics were set and the top 30 keywords were derived for each topic. 
The primary keywords and number of documents are listed in Table 2. For Topic 1, the main keywords were 
people, friends, love, cafés, and restaurants. For Topic 2, the main keywords were running, hiking, mountain, 
trail, and walking. For Topic 3, the main keywords were tour, travel, culture, guide, and museum. Finally, for 
Topic 4, the main keywords were flower, walk, outings, relaxation, and art. Therefore, topics 1 to 4 were labelled 
social, exercise, tourism, and rest. 

Table 2: Result of LDA 

Topic Subject Primary keywords Num of documents Perc of documents 
1 Social people, friends, love, cafe, restaurant 517 0.26 
2 Exercise running, hiking, mountain, trail, walking 444 0.23 
3 Tourism tour, travel, culture, guide, museum 433 0.22 
4 Rest flower, walks, outings, relaxation, art 579 0.29 

The topic modeling results were visualized using the LDAvis library developed in Python. LDAvis shows the 
topic similarity and word distribution by topic by reducing the topic with a number of words into two dimensions 
using principal component analysis (PCA). The size of the circle indicates the number of words relevant to the 
topic and their distribution. The distance between the circles indicates the similarity between topics; that is, the 
closer it is, the more similar the topic. The bar shows the leading keywords that form the topic and the topics 
related to that keyword. Keyword extraction was based on two criteria, salience and discriminative power. 
Salience indicates that a word is important because it frequently appears in each document. In contrast, 
discriminative power indicates that a word appears repeatedly throughout a document and is consequently less 
important. In other words, a negative correlation exists between salience and discriminative power. Figure 3 
shows the results of LDAvis. 

 

Figure 3: (a) Intertopic distance map (via multidimensional scaling) (b) Top-30 most salient terms 

3.2 Analysis of Spatial Distribution 

In this study, the ‘ArcGIS’ software was used for spatial analysis. Each post was mapped to a low-emission 
zone using longitude and latitude coordinates. The distribution of representative topics by region in the low-
emission zone is shown in Figure 4. For instance, exercise-type leisure activities were found to predominate in 
the northern region. This observation is valid because this region comprises popular mountainous areas such 
as the Inwangsan and Bukaksan Mountains, where several people come to hike. In the central region, tourism 

(a) (b) 
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was identified as the main leisure activity. This is confirmed by the fact that this region includes several cultural 
monuments and tourist attractions, such as the Changdeokgung Palace and Jongmyo Shrine. In the southern 
region, rest-type leisure activities were found to predominate. This is confirmed by the presence of several 
resting places, such as Namsan Cherry Blossom Road and Namsan Park, in this region. Finally, social-type 
activities were identified as the primary leisure activities in the eastern region. This is confirmed by the presence 
of trendy places such as Eulji-ro and Daehak-ro, which are frequented by youngsters. 

 

Figure 4: Distribution of representative topics by region 

By dividing regions according to representative leisure types, the regional changes in traffic volume were 
confirmed. The data represents the period from 2020 to 2021. The traffic volume includes the number of shared 
bicycle rentals and public transportation rides, which is the sum of the number of bus and subway rides. The 
analysis showed that areas where social-type and tourism-type activities predominate, exhibit a higher number 
of bicycle rentals and public transportation rides than the average of all leisure activities. In particular, the 
number of shared bicycle rentals was the highest at 23,785 rentals/station in areas where social-type was the 
main leisure activity, and the number of public transportation riders was the highest at 2,345,624 people/station 
in areas where tourism-type was the main leisure activity. In other words, people travelling to the low emission 
zone for social and tourism purposes availed green transportation modes more frequently. Conversely, in areas 
where exercise-type was the main leisure activity, the number of bicycle rental and public transportation riders 
was 12,446 rental/station and 262,330 people/station, which were significantly lower than the average. In other 
words, most people who engage in intense exercise activities avail the services of a passenger car, which is a 
door-to-door transportation mode that requires less effort. 

 

Figure 5: (a) Number of shared bicycle rental by region (b) Number of public transportation rides by region 

4. Conclusions 
To revitalize the government's green transportation policy, the individual behavior of travellers according to the 
purpose of travel must be analyzed. In this study, individual non-daily data was collected using Instagram. LDA 
was used to extract topics classified into four leisure types: social, exercise, tourism, and rest. The spatial 
distribution of these topics within the low-emission zone was determined. The representative topics were 
different for each region: northern, central, southern, and eastern regions. In addition, by analyzing the amount 
of use of transportation according to leisure activities by region, the correlation between the purpose of travel 
and the mode of transportation was identified. People who travelled for tourism-type leisure activities used public 
transportation the most. This seems to be a typical use of public transportation facilities for travelers without a 

(a) (b) 
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car to visit tourist attractions. In contrast, people involved in exercise-type leisure tend not to use these modes 
of transportation. People who put a lot of energy into intense exercise activities mainly used a passenger car, 
because they did not want to use a lot of energy during travel. From this perspective, establishing a regional 
customized linkage plan for green transportation according to the major types of activities can maximize the 
effectiveness of green transportation activation strategies. For instance, policies that improve the infrastructure 
of social and tourism-type leisure activities can effectively revitalize green transportation in low-emission zones. 
In addition, if a differentiated activation strategy is prepared that reflects the main leisure types and 
characteristics of each region, the use of eco-friendly transportation can be promoted. Activating customized 
transportation according to the purpose of travel will promote eco-friendly cities. 
Main contribution of this study is to identify individual traffic purposes by collecting and analyzing unstructured 
data from social media rather than the conventional self-survey method, and find a relationship with eco-friendly 
transportation. People recorded their leisure information about low-emission zone on social media. Using 
unstructured data stored on social media, the main purpose of travel different for each region was identified. 
The purpose of travel affected visitors' choice of means of travel, and significant differences in the usage of 
green transportation were confirmed for each purpose of travel. The target area of this study was low-emission 
zone, and if keywords are used differently when collecting posts, this framework can be applied to various areas. 
There are two limitations that the keyword must be set by users themselves, and it is difficult to collect various 
posts without keywords uploaded in the region. In the future, based on the results of this study, it can be a great 
help in predicting traffic demand by precisely tracking individual traffic behaviors. 
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