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Blast furnaces are chemical metallurgical reactors for the production of pig iron and slag. The raw materials 
used (metallic feedstock) are sinter, granulated ore and pellets. The main fuel is metallurgical coke. Considering 
the existing difficulties in the field of simulation of complex processes, the application of solutions based on 
neural networks has gained space due to its diversity of application and increase in the reliability of responses. 
The Extreme Learning Machine is a way to train an artificial neural network (ANN) with only one hidden layer. 
The database used for numerical simulation corresponds to 3.5 years of reactor operation. Big Data contains 
94875 pieces of information divided into 75 variables. The input of the ELM neural network is composed of 72 
variables and the output of 3 variables. The selected output variables were coke rate, PCI rate and fuel rate. 
Artificial neural networks using extreme learning machines and using Big Data are able to predict fuel 
consumption based on the parameters of the reduction process in blast furnaces, and this can be verified by 
the accuracy of the model. 

1. Introduction 

Blast furnaces are chemical metallurgical reactors for the production of pig iron and slag. Pig iron is obtained in 
a liquid state and consists of iron (92 to 95%), carbon (3 to 4.5%) and impurities such as sulphur, phosphorus 
and silica. The raw materials used (metallic feedstock) are sinter, granulated ore and pellets. The main fuel is 
metallurgical coke. All these materials are loaded through the upper part of the reactor, with hot air blown into 
the lower section. The injected hot air gasifiers the coke and produces CO reducing gas and a large amount of 
heat that rises upwards in counter current to the descent of the charge, providing heating, reduction and melting 
of the metallic charge. Pulverized coal is used as an additional fuel, which is blown in together with hot air (Itman 
et al., 2014; Cardoso et al., 2021; Cardoso et al., 2021d; Kina et al., 2021). 
The preheated air with a temperature of about 1200°C is blown through the blast tuyeres of the blast furnace 
and comes into contact with the coke in the raceway area. The contact of the oxygen in the air with the carbon 
of the coke heated to 1500°C first leads to a reaction that produces carbon dioxide (CO2). This highly exothermic 
reaction generates a large amount of heat for the process. The carbon dioxide immediately reacts with the 
carbon in the coke to form carbon monoxide (CO), according to the loss-of-solution or Boudouard reaction (C + 
CO2 → 2CO), which is very endothermic (Itman et al., 2013; Arif et. al, 2021; Cardoso et. al, 2021a; Cardoso 
et. al, 2022a; Cardoso et. al, 2022b; Cardoso et. al, 2022c; Kellouche et. al, 2021). 
The moisture contained in the injected air reacts with the carbon in the coke to produce the reducing gases CO 
and H2. Although these reactions are endothermic, i.e. proceed under heat absorption, the exit of the reducing 
gases from the duct effectively results in a high heat input into the process, producing flame temperatures in 
excess of 2000°C. On the rest of the way through the furnace, the rising gas gives off heat to the descending 
metal layers and leaves the furnace with temperatures in the order of 100 to 150°C (Kurunov, 2019; Cardoso 
et. al, 2022d; Cardoso et. al, 2022e; Cardoso et. al, 2022f; Kina et al., 2021). 
Due to the different heat requirements for a number of chemical reactions taking place at different levels in the 
furnace, the temperature profile takes on a characteristic shape: an upper preheating zone (0-800ºC) separated 
from a lower melting zone (900-1500ºC) and a vertical thermal reserve zone whose temperature is in the range 
of 800-1000ºC.  
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The thermal reserve zone, where there is little heat exchange between gas and solids, occupies 40-50% of the 
total height of the furnace (David et. al, 2016; Liang et. al, 2020; Cardoso et. al, 2021b; Cardoso et. al, 2022g; 
Kina et al., 2021). The nature of the counter current process allows a highly reducing gas (high content of CO) 
to contact the metallic mineral wustite, which has the lowest oxygen potential of the iron oxides, and then 
hematite and magnetite in the upper zone to be reduced by a gas with a lower reduction potential. Since CO2 
is the end product of carbon combustion, the more oxygen that is removed, the more complete the utilisation of 
the thermal and chemical energy of the carbon. These reactions are called indirect reduction, and the overall 
reaction is slightly exothermic. If some of the wustite remains unreduced, it is further reduced by direct reduction 
in the range where temperatures exceed 1000°C. The high temperature ramp gas generated in the combustion 
zone (tuyeres region) causes heating of the charge, decomposition reactions and reduction of oxides during its 
ascent in the blast furnace. As a result, the temperature of the gas gradually decreases while its chemical 
composition changes (Su et. al, 2018, Cardoso et. al, 2021c; Liu et. al, 2021; Cardoso et. al, 2022). 
First, near the charge level, the charge undergoes moisture evaporation and preheating. When the charge 
decreases, the reduction of iron oxides takes place. The pig iron (hot metal) and slag that are in the crucible are 
removed at controlled intervals through the running holes. In the area of the tuyeres, the coke gradually 
decreases in size as it burns. Together with the fusion of the materials that make up the charge, this causes the 
level in the blast furnace to drop, so that a new charge has to be conveyed at the top. Coke is considered the 
permeabilizer of the blast furnace charge. This role cannot be assumed by any other fuel, as coke is the only 
material capable of maintaining the permeability of the bed to the ascending gas, as well as that of the 
descending liquid slag and hot metal. Coke remains solid under the high-temperature conditions prevailing in 
the oven and maintains levels of resistance to the different stresses it undergoes inside the oven. This allows it 
to maintain a suitable size and size distribution for good permeability, without which the manufacture of pig iron 
in a blast furnace would be impossible (Lyalyuk et. al, 2017; Lyalyuk et. al, 2018; Ducic, 2020; Arif et. al, 2021). 
Figure 1a illustrates the working principle of a blast furnace.  
 

 

Figure 1: (A) Blast furnace and (B) Artificial neural network using the extreme learning machine  

In the field of technology and modelling, in addition to predicting the effects of changes in production parameters, 
several blast furnace simulation models have been developed with the aim of improving production conditions 
Considering the existing difficulties in the field of simulation of complex processes, the application of solutions 
based on neural networks has gained space due to its diversity of application and increase in the reliability of 
responses (Wong et. al, 2016). The Extreme Learning Machine, an algorithm proposed by Huang et al. (2004) 
and Huang et al. (2006), is then another way of training an artificial neural network (ANN) with only one hidden 
layer. The extreme learning machines used in this work have an architecture similar to multi-layer neural 
networks (MultiLayer Perceptron), with only one intermediate layer, as shown in Figure 1b. 
The goal of this work is to numerically simulate an artificial neural network with 25 neurons in the hidden layer 
using the extreme learning machine methodology. 
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2. Research Method 

The database used for numerical simulation corresponds to 3.5 years of reactor operation. Big Data contains 
94.875 pieces of information divided into 75 variables. The input of the ELM neural network is composed of 72 
variables and the output of 3 variables. The selected output variables were coke rate, PCI rate and fuel rate. 
The artificial neural network has a similar structure to Figure 2 with an architecture based on an extreme learning 
machine, a simple layer, 25 neurons in the hidden layer, using the Levenberg-Marquardt training algorithm, and 
a sigmoid activation function. Figure 3 shows more details of the architecture. 

 

Figure 3: Architecture of artificial neural network using the extreme learning machine principle 

Considering the information in the work of Cardoso and Felice (2021), 85% of the database should be used to 
train a neural network based on an extreme learning machine and the remaining 15% will be used to test the 
predictive ability of the model. Cross-validation is a step that occurs after testing and using an additional 
database. At this stage, the predictive ability of the model is tested again. Table 1 illustrates the splitting of the 
database. The method used to evaluate the quality of the neural network model was the RMSE (root mean 
square error). Small values close to zero indicate better predictive capacity of the model. Pearson's 
mathematical correlation coefficient (R) was also used to validate the mathematical models. The RMSE 
mathematical equation is presented in Eq(1) and Pearson's mathematical correlation coefficient is presented in 
Eq(2). 

Table 1: Division of samples 

Step Samples 
Training 935 
Testing 165 
Cross-validation 165 
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Descriptive statistics describe the database using measures such as mean, median, standard deviation, 
maximum, minimum, skewness, and kurtosis. Table 2 illustrates the statistics of the output variables (coke rate, 
PCI rate, and fuel rate) used in the Extreme Learning Machine. 

Table 2: Output variables 

Variables Unit Mean Std_Dev Minimum Median Maximum Skewness Kurtosis 
Coke rate kg/ton 312.9 24.4 272.1 310.8 489.0 2.7 12.9 
PCI rate kg/ton 179.9 19.3 128.5 179.9 222.5 -0.1 -0.5 
Fuel rate kg/ton 492.8 19.5 464.4 490.3 668.9 4.9 33.7 
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3. Results and discussions 

Table 3 presents the results of the descriptive statistics between the extreme learning machine (ELM) and the 
values available in Big Data. Table 4 illustrates the obtained RMSE values. It is important to note that the RMSE 
values are not considered high due to the high magnitude of the variables. Figures 4 to 6 illustrate the ELM 
results using a scatterplot of the output variables compared to big data values. 

Table 3: Descriptive statistics of output variables 

Source Variables Unit Mean Std_Dev Minimum Median Maximum Skewness Kurtosis 
Big Data Coke rate kg/ton 312.9 24.4 272.1 310.8 489.0 2.7 12.9 
ELM 314.8 24.0 272.1 312.3 496.1 2.7 14.1 
Big Data PCI rate kg/ton 179.9 19.3 128.5 179.9 222.5 -0.1 -0.5 
ELM 179.9 18.6 128.5 179.9 223.1 -0.2 -0.5 
Big Data Fuel rate kg/ton 492.8 19.5 464.4 490.3 668.9 4.9 33.7 
ELM 494.7 19.8 460.8 492.6 675.7 4.6 31.4 

Table 4: Root Mean Square Error (RMSE) 

Step Coke rate PCI rate Fuel rate 
Overall 4.494 2.412 4.874 
Training 4.499 2.249 5.062 
Testing 4.481 2.756 4.405 
Cross-validation 4.491 2.472 4.780 

 

Figure 4: Coke rate scatter diagram between ELM results and Big Data 

 

Figure 5: PCI rate scatter diagram between ELM results and Big Data 
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Figure 6: Fuel rate scatter diagram between ELM results and Big Data 

 
The analysis of Table 3 proves that the extreme learning machine has achieved excellent results, as the values 
are similar to those of Big Data. The values obtained for the RMSE in Table 4 were relatively low considering 
the size of the variables. In Figure 4, the coke rate shows a mathematical correlation of 0.9706, while in Figure 
5, the PCI rate shows a mathematical correlation of 0.9544. The fuel rate (Figure 6) is the sum of the coke rate 
and the PCI rate and shows a mathematical correlation of 0.9484. This again proves the excellent learning 
ability of the artificial neural network based on an extreme learning machine. 

4. Conclusions 

Regarding simulation methods for predicting process variables, the increasing development of computational 
capacity leading to cheaper and more powerful equipment is driving the development of more complex 
algorithms with better results, such as artificial neural networks using extreme learning machines. 
Artificial neural networks using extreme learning machines and using Big Data are able to predict fuel 
consumption based on the parameters of the reduction process in blast furnaces, and this can be verified by 
the accuracy of the model. 
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