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A microbial consortium which was obtained from lead contaminated soil at a battery recycling plant in South 
Africa was previously proved to be effective at removing approximately 50% of Pb(II) from solution within the 
first 3 h at 80 and 500 ppm Pb(II). Klebsiella pneumoniae was determined to be the dominant species 
responsible for Pb(II) bioprecipitation which was the main lead removal mechanism. In the current study, the 
purified K. pneumoniae was metabolically deactivated by drying and the resulting biomass tested for Pb(II) 
adsorption properties. Results demonstrated that the metabolically inactive K. pneumoniae biomass removed 
approximately 39% of a 100 ppm Pb(II) solution in 3h. pH measurements and FTIR spectroscopy indicated 
cation exchange of 𝐻+-ions for Pb(II) as well as adsorption interactions with functional groups (hydroxyl 
compound and amide) as being responsible for this removal. These results confirmed biosorption being 
responsible for the initial phase of Pb(II) removal which acts as a vehicle for concentrating Pb(II) on the surface 
of the bacteria before bioprecipitation takes place. These results provide further insights into the Pb(II) removal 
mechanisms involved in the Pb(II) bioremediation processes required for eventual scaling of these processes.  

1. Introduction 

Rapid industrialization and unplanned urbanization have introduced heavy metals into the environment through 
improper dumping of industrial wastes directly on land and into water bodies (Dixit et al., 2015). Consequently, 
environmental contamination by heavy metals has emerged as a major concern (Hashem et al., 2017) and is 
associated with environmental pollution and bio-toxicity issues attributed to their ability to inhibit biodegradation 
activities (Masindi and Muedi, 2018).  
Heavy metal contamination, especially lead, has been a constant common problem worldwide (Tong et al., 
2000). Chronic exposure to heavy metals such as lead poses a major threat to soil, water, and food safety 
because of their inherent toxicity to living organisms, especially humans (Fewtrell et al., 2004).  
The permissible limit of lead in drinking water is 5 µg/L (Waihung et al., 1999). The presence of lead in drinking 
water above the permissible limit causes diseases such as anaemia, encephalopathy, hepatitis, and nephrotic 
syndrome (Panchanadikar and Das, 1994).  
Due to the increasing concern about the public health and environmental problems caused by lead 
contamination, developing highly efficient and stable treatment methods is necessary (Jeong et al., 2019). 
Conventional techniques such as membrane filtration, adsorption, chemical precipitation, ion exchange and 
electrodialysis are employed in addressing lead pollution from waste streams by converting Pb(II) ions to a less 
harmful state but requires supplementary treatment in the recovery of Pb (0) (Van Veenhuyzen et al., 2021a). 
Most of these treatment techniques are advantageous due to high selectivity but are too costly in the treatment 
of waste streams with low Pb(II) concentrations (Fu and Wang, 2011). The traditional approaches for the 
removal of Pb(II) include reduction, extraction, ion exchange, precipitation, and membrane filtration which suffer 
the problems of low efficiency and high operating costs (He et al., 2019). Adsorption has become one of the 
alternative treatments due to its low-cost, high performance and wide pH range, in recent years, the search for 
low-cost adsorbents that have metal-binding capacities has intensified (Leung et al., 2000). The adsorbents 
may be of mineral, organic or biological origin, zeolites, industrial by-products, agricultural wastes, biomass, and 
polymeric materials (Kurniawan et al., 2005).  
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The most recent estimate of current lead ore reserves (88 Mt) means that raw lead could potentially be depleted 
by 2035 (Statista, 2019). Lead recovery is of ultimate importance as it does not only lead to an environmentally 
friendly cycle, but also results in the diminution of the adverse effects of lead mining.  
A microbial consortium which was obtained from lead contaminated soil at a battery recycling plant in South 
Africa has been demonstrated to remove 90 % of Pb(II) from an 80 𝑚𝑔 𝐿⁄  solution over a period of 7 days (Brink 
et al., 2017).  The consortium was effective at precipitating Pb(II) from solution and was shown to remove 
approximately 50 % of Pb(II) at conditions of 80 and 500 ppm within the first 3 hours (Hörstmann et al., 2020). 
Study shows that the ionic lead in solution was precipitated out as PbS and elemental Pb by the microbes (Van 
Veenhuyzen et al., 2021a). Further study on the battery recycling plant consortium shows that K. pneumoniae 
was the dominant species responsible for Pb(II) bio precipitation which was the main lead removal mechanism 
(Hörstmann et al., 2020). Non-living bacteria removed 61.7 ± 4.86 % of Pb(II) in 3 hours, and FTIR spectroscopy 
supported the chemisorption of lead onto functional groups as being responsible for this removal confirming 
biosorption being responsible for the initial phase of Pb(II) removal which acts as a vehicle for concentrating 
Pb(II) on the surface of the bacteria before bioprecipitation takes place (Van Veenhuyzen et al., 2021a).  
The main purpose of this study is to investigate the bioremediation removal effectiveness of K. pneumoniae, an 
isolated microbial strain of the consortium to determine its contribution to Pb(II) removal. This method of bio-
removal could serve as the first step towards the design of a continuous reactor for large-scale implementation 
in various industries as a simple cost-effective method to remediate and regenerate Pb-containing effluents. 

2. Materials and methods 

2.1 Material preparation 

K. pneumoniae was prepared from a battery recycling plant consortium frozen at -60 °C. The 100 mL pure 
culture was prepared under aerobic conditions in a batch reactor starting with 20 𝑔 𝐿⁄  tryptone, 10 𝑔 𝐿⁄  yeast 
extract and 1 ml of 100 𝑔 𝐿⁄  NaCl (Hörstmann et al., 2020). The culture was left to grow in a shaker-incubator 
for 24 h, 35 °C and 120 rpm. The pure culture was then centrifuged at 9000 rpm for 10 minutes at 4 °C, rinsing 
with ultrapure water, and centrifuging again before being oven dried at 74 °C for 24 h to successfully inhibit 
microbial respiratory chain and ensuring Pb(II) removal through biosorption alone. 

2.2 Optical density measurement 

A spectrophotometer was used in reading the degree of light dispersed by the pure culture. For optical density 
reading (𝑂𝐷600), the sample was diluted 4 times before measurement was made at 600 nm. 

2.3 Metabolic activity measurement 

Metabolic activity was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) which 
is a yellow dye reduced to formazan crystals by the dehydrogenase system of viable gram-negative bacterial 
cells (Van Veenhuyzen et al., 2021a).  
For metabolic activity readings, 0.5 mL filtered (0.45 µm) of the sample was added to 0.2 mL MTT and 1.3 mL 
sterilized ultrapure water. Also, 0.5 mL unfiltered sample was added to 0.2 mL MTT and 1.3 mL sterilized 
ultrapure water. Dimethyl sulfoxide was added to the solution after an hour incubation to dissolve the formazan 
crystals (Van Veenhuyzen et al., 2021a).  
A spectrophotometer was used in measuring light absorbed at 550 nm between the unfiltered and filtered 
samples to infer metabolic activity differences (Peens, 2018).   

2.4 FTIR analysis  

Fourier-transform infrared (FTIR) spectra of the pure culture were measured after four successive processes. 
The first measurement was taken after 24 h growth period of the bacteria. The second measurement was taken 
after 24 h oven drying of the bacteria at 74 °C. The third measurement was taken after the bacteria was exposed 
to 100 ppm of 𝑃𝑏(𝑁𝑂3)2. The last measurement was taken 14 h after the addition of 100 ppm 𝑃𝑏(𝑁𝑂3)2 to the 
pure culture.  An attenuated total reflection (ATR) attachment was used in recording spectra on a Perkin Elmer 
Spectrum 100 FTIR spectrometer. All FTIR spectra were recorded on a wavelength from 4000 to 900 𝑐𝑚−1 and 
represent an average of 30 scans.  

2.5 Lead removal experiments   

Sterilized reactors containing 100 mL of ultrapure water, 1 ml of 1.711 M 𝑁𝑎𝑁𝑂3 salt substitute with oven dried-
sterilized bacteria, and 100 ppm of Pb(II) was prepared. This will serve as the concentration for the basis of 
comparison with other microbial strains of the consortium. The reactor was triplicated to ensure repeatability 
and the Pb(II) removal over a 14 h period was investigated.  
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Reactors were sampled at various time intervals and filtered (0.45 µm) and initial and final pH readings of the 
samples were measured. The Pb(II) concentration in samples was measured using an atomic absorption 
spectroscopy (Perkin Elmer AAnalyst 400, Waltham, Massachusetts).  
The dry mass of bacteria per mL of pure culture was determined by centrifuging the pure culture at 9000 rpm 
for 10 min at 4 °C, rinsing with distilled water, and centrifuging again (Van Veenhuyzen et al., 2021a) before 
being oven dried at 74 °C for 24 h.  

3. Results and discussion 

3.1 FTIR analysis 

FTIR analysis for functional groups revealed the presence of two functional groups in the samples. The 
wavelength and functional group obtained from the spectra are presented in Table 1. 

Table 1: FTIR spectra of K. pneumoniae  

Wavelength (𝑐𝑚−1)  Functional group Reference   
3298 Hydroxyl compound Deepashree et al., 2013   

1640 Amide Y. Liu et al., 2016   
 
The presence of hydroxyl compound was revealed due to the occurrence of the broad peak found at 3298 𝑐𝑚−1 
which was caused by O-H stretching (Deepashree et al., 2013). This finding aligns with literature which shows 
that hydroxyl functional groups are mainly responsible for the adsorption of Pb(II) (Xiaoping & Xiaoning, 2013). 
The band occurring at 1640 𝑐𝑚−1 was attributed to the occurrence of -C=O in amide I (Y. Liu et al., 2016).  
No difference was observed in any of the four spectra which shows that the surface characteristics of the 
bacteria remain unchanged and oven drying the bacteria at 74 °C for 24 h did not rupture the cell wall of the 
bacteria.   

 

Figure 1: FTIR spectra of K. pneumoniae a) after a growth period of 24 h, b) after oven drying for 24 h at 74°C, 

c) after exposure to 𝑃𝑏(𝑁𝑂3)2, and d)14 h after adding 𝑃𝑏(𝑁𝑂3)2. 
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3.2 Lead removal experiments 

As shown in figure 2, 23.1 mg/g (38.8 %) %) of the Pb(II) was removed by oven dried sterilized bacteria in 3 h. 
A passive process was responsible for Pb(II) removal from the solution as metabolic activity was not detected 
using MTT. Black or grey precipitate was not evident in the 14 h period, which indicates that PbS or Pb (0) was 
not formed. The Initial and final pH values of the reactors were 6.13 and 5.83 respectively. The drop in pH is 
likely due to the release of protons from the surface of the bacteria because of cation exchange processes in 
which the 𝐻+-ions are displaced by the Pb(II)-ions on the surface (Van Veenhuyzen et al., 2021b).  

 

Figure 2: Graph of Pb(II) removal by K. pneumoniae in mg/g against time in minutes. 

Table 2 shows a summary of comparable Pb(II) adsorption studies from literature and demonstrates that the 
current study compares very favourable with studies from literature. This indicates that K. pneumoniae has 
comparable biosorption properties when compared to results from literature. However, comparison of the 
adsorption capacity of the original consortium studied by Van Veenhuyzen et at (2021a) shows that K. 

pneumoniae had an adsorption capacity an order of magnitude smaller than the overall consortium, indicating 
that K. pneumoniae cannot be considered the dominant biosorbing species in the system.  

Table 2: Lead removal assessment by various biomass adsorbents 

Biomass  
properties 

Adsorbent 
Mass (mg) 

Original Pb(II) 
concentration 
(mg/L) 

 Time 
(h) 

Removal 
(%)  

 Maximum 
measured 
adsorption 
capacity (mg/g) 

Reference 

Battery 
recycling  
plant 
consortium 

47.50 150  3 63  199 Van 
Veenhuyzen 
et al., 2021a 

Battery 
recycling  
plant  
consortium 

- 80  3 50               -  Hörstmann et 
al., 
2020 

Rhodococcus 

sp. HX-2 
750 200  0.5 47  88.74 Hu et al., 2020 

Streptomyces 

rimosus 
3000 500  3 20  135 Selatnia et al., 

2004 
Klebsiella 

pneumoniae 

36.2 100  3 38.8  23.1 This study 

376



4. Conclusions 

In our research, metabolically inactive K. pneumoniae was employed as a biosorbent to eliminate Pb(II) from 
aqueous solution. It was found that oven drying the bacteria at 74 °C for 24 h inhibited the metabolic activity of 
the bacteria without rupturing the cell wall. Metabolically inactive K. pneumoniae removed 23.1 mg/g (38.8 %) 
of Pb(II) in 3 h, and FTIR spectroscopy indicated the biosorption of Pb(II) onto functional groups (Hydroxyl 
compound and Amide) as being responsible for this removal. It was found that, K. pneumoniae lowered the pH 
of the solution by generating molecular hydrogen likely due to the cationic exchange of surface bound protons 
with Pb(II) ions. Conclusions drawn from this research allow for further study on the comparison of the 
biosorption effectiveness of the isolated microbial strains to the previously studied consortium to determine the 
respective contributions of the strains to Pb(II) removal which will be applied in concurrence with a kinetic model 
to develop a design and implementation strategy for continuous bio-removal and regeneration of Pb(II) from 
industrial effluents. 
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