

VOL. 96, 2022

DOI: 10.3303/CET2296048

Guest Editors: David Bogle, Flavio Manenti, Piero Salatino Copyright © 2022, AIDIC Servizi S.r.I. ISBN 978-88-95608-95-2; ISSN 2283-9216

Decomposition of N₂O over Ni_xCo_{3-x}O₄ Catalyst

Olga Muccioli^{a,*}, Eugenio Meloni^a, Marco Martino^a, Simona Renda^a, Pluton Pallumbi^b, Federico Brandani^b, Vincenzo Palma^a.

^aUniversity of Salerno, Department of Industrial Engineering, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy. ^bCampus Innovation Paris, Air Liquide, Chem de la Porte des Loges 1, 78350, Les Loges en Josas, France. omuccioli@unisa.it

Nitrous oxide (N₂O) was recognized as a strong greenhouse gas that can be reduced by applying posttreatment technologies. N₂O catalytic decomposition is considered the most attractive method for N₂O abatement due to its easy operation and high efficiency. Among several catalysts, the cobalt-based mixed oxides have been identified as the most performing for this reaction. In this work a Ni_xCo_{3-x}O₄ catalyst was prepared, characterized by means of nitrogen physisorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray fluorescence spectroscopy (XRF), and tested in the N₂O decomposition reaction in presence of two different reactant mixtures, by using N₂O and O₂ with two different vol% as reactants, in order to evaluate the effect of the latter on the catalytic behavior. The results demonstrated that the concentrations of N₂O and O₂ in the gaseous stream strongly influenced the activity of the catalyst, indeed, by halving the O₂ concentration, the N₂O conversion increases from 54 % to 79 %. The Ni_xCo_{3-x}O₄ sample resulted a promising catalyst for N₂O decomposition reaction of gaseous stream containing up to 5 vol% of N₂O, also in presence of O₂.

1. Introduction

In recent years, growing attention has been paid toward environmental issues, including greenhouse gas (GHG) emissions. The main GHGs induced by human activities are CO₂, CH₄ and N₂O. In particular, the latter persists for a very long time in the atmosphere, up to 120 years, and its greenhouse effect is 2.5 and 310 times larger than that of CH₄ and CO₂, respectively (Miao et al., 2021). Moreover, it is noteworthy that the concentration of N₂O in the earth's atmosphere has registered an increase of more than 10 % compared to pre-industrial levels (Konsolakis et al., 2013). This rising amount of N₂O emissions has aroused great global concern, thus, in addition to CO₂ control, the N₂O abatement is also of great importance for limiting global warming. The main anthropogenic sources of N₂O are fertilization, fossil fuel combustion, and several chemical processes, including adipic acid and nitric acid production, in which the exhaust gases plants consist of 20-50 vol% and 0.03-0.35 vol% N₂O, respectively (Hu et al., 2021). Among several technologies proposed for the abatement of N₂O, such as selective absorption, thermal decomposition, selective catalytic reduction, the catalytic decomposition process is considered the most attractive choice due to its easy operation and high efficiency (Liu et al., 2016). The decomposition of N₂O to oxygen and nitrogen (equation 1), is an irreversible exothermic reaction, kinetically hindered by low temperature conditions.

$$2 N_2 O \rightarrow 2 N_2 + O_2 \qquad \Delta H_{298k} = -163 \text{ kJ mol}^{-1}$$
 (1)

 N_2O is a linear asymmetrical molecule (N-N-O), where the N-N bond order is about 2.7 and that of N-O about 1.6, so the latter is most probable to be broken first. The thermal decomposition requires temperature above 630 °C to obtain measurable conversions, thus the catalyst has an important role in achieving high conversion at lower temperature (Kapteijn et al., 1996).

The reaction mechanism for the N₂O decomposition over catalyst could occur through two different reaction routes (Figure 1) that can be summarized in three elementary steps (Yu, 2018), as follows:

$$N_2O + ()^* \rightarrow (O)^* + N_2$$

(2)

Paper Received: 15 December 2021; Revised: 3 August 2022; Accepted: 4 August 2022

Please cite this article as: Muccioli O., Meloni E., Martino M., Renda S., Pullumbi P., Brandani F., Palma V., 2022, Decomposition of N₂O over Ni_xCo_{3-x}O₄ Catalyst, Chemical Engineering Transactions, 96, 283-288 DOI:10.3303/CET2296048

283

$2(O)^* \leftrightarrow O_2 + 2()^*$ (Langmuir – Hinshelwood)

$$N_2O + (O)^* \rightarrow O_2 + N_2 + ()^* (Eley - Rideal)$$
 (4)

(3)

In the first stage (2), N_2O molecule absorbs on active vacant site, denoted as ()*, that takes away the oxygen atom from the N_2O molecule. The second stage consists in molecular oxygen combination and desorption (3), and it constitutes the rate determinant stage. According to the equation (4), an adsorbed oxygen atom can react with one free N_2O molecule to produce oxygen gas. It must be noted that the latter mechanism can occur on an isolated site, while the previous requires two close active sites to facilitate O-O combination and enhance reaction probability (Lin et al., 2021). Furthermore, considering industrial applications, other reactant gases could be present in the treated stream, such as oxygen. Excess oxygen in the reactant mixture has inhibitory effect on the N_2O decomposition reaction, since the molecular oxygen competes with N_2O to absorb on active sites, making the process even more difficult. It is clear that the composition of the gaseous mixture can strongly influence the reaction rate, thus the catalytic activity.

Figure 1: (a) Langmuir-Hinshelwood; (b) Eley-Rideal.

As N₂O catalytic decomposition follows reduction-oxidation mechanism, an effective catalyst consists of at least one metallic ion with variable valences, such as transition metal oxides, supported noble metals, and ionexchanged zeolites (Li et al., 2016). Among several catalysts active for this reaction, cobalt-based oxides have been especially studied. It is reported that their activity can be enhanced by adding divalent metal into Co₃O₄, such as Cu, Mg, Ni or Zn (Abu-Zied et al., 2015), and it has been demonstrated that the introduction of Ni into the structure of Co₃O₄ evidently improves the catalytic performance for N₂O decomposition reaction (Yan et al., 2003). Furthermore, mixed valence oxides of transition metals gained wide attention due to the high availability of the elements, low cost, environmental friendliness, ease of preparation and their notable electrochemical activity. Among them, nickel-cobalt combinations exhibit better synergistic effect compared to the corresponding mono-metals (Ashok et al., 2019). In the light of the above considerations, in this work, a nickel-cobalt mixed oxide (NixCo_{3-x}O₄) was prepared, characterized, and tested for the N₂O decomposition reaction. In order to evaluate the catalytic performance in severe conditions, the experimental tests were carried out in presence of oxygen. The influence of the reagent mixture composition on the catalytic behavior of the sample was investigated in terms of N₂O conversion by increasing the oxygen concentration from 5 vol% to 10 vol%, keeping unchanged the O2/N2O feed ratio. Higher conversions were reached at lower concentrations of N₂O and O₂ in the gaseous mixture.

2. Experimental

2.1 Catalyst preparation

The Ni_xCo_{3-x}O₄ oxide was obtained by performing the following procedure. An aqueous solution of NH_{3,aq} (32 vol%) was dropped into a mixed aqueous solution containing known amounts of $(CH_3COO)_2Co \cdot 4H_2O$ and Ni(NO₃)₂ · 6H₂O at room temperature until the pH of the solution reached 9. The resulting precipitate was filtered and washed until neutralizing the filtrate. The obtained samples were dried overnight at 120 °C and calcinated at 600 °C in air for 2 h (10 °C/min heating rate).

284

2.2 Characterization methods

The specific surface areas (SSA) were measured by N₂ adsorption at -196 °C, by means of NOVAtouch sorptometer, applying BET method. The same technique was also used for determining the pore volume and pore radius of the sample. The chemical composition of the sample was determined with an X-ray fluorescence spectroscopy (XRF) by means of Thermo-Scientific QUANT'X, based on an energy dispersion analysis. SEM (scanning electron microscopy) observations of the catalytic sample were performed by using Philips Mod.XL30 electron microscope, coupled to an Energy Dispersive X-ray Spectrometer (EDS) Oxford. X-ray diffraction (XRD) patterns were recorded on a Brucker D2 diffractometer, designed according to the Bragg geometry.

2.3 Catalytic decomposition of N₂O

N₂O decomposition was carried out by means of a properly set up laboratory plant. The experiments were carried out in a tubular fixed-bed reactor located in a furnace for the heating supply. The furnace was provided of three heating sections, each with a dedicated K-type thermocouple and managed by TLK38 controllers, aiming at assuring an optimal thermal profile inside the reactor. The catalyst (1.5 g) was placed in the middle section of the reactor with a powder granulometry of 180-355 μ m, previously identified as optimal for limiting the diffusive mass transfer phenomena, so allowing the total exploitation of the catalytic mass (Palma et al., 2016). Two K-type thermocouples in correspondence of the inlet and outlet section of the catalytic bed ensure the monitoring of the temperature. The gaseous stream was fed to the reaction by means of mass flow controllers (MFCs). The sample was pretreated in situ by heating the system up to 600 °C (10 °C/min heating rate) in Ar flow. The catalytic activity of the sample was investigated under atmospheric pressure in a temperature range of 350-600 °C by employing two different reactant mixtures: 5 vol% N₂O, 5 vol% O₂ and balanced Ar, 10 vol% N₂O, 10 vol% O₂ and balanced Ar. The gas hourly space velocity (GHSV), defined in the equation (5), was 15000 h⁻¹. The products were analyzed by means of a QGA mass spectrometer (Hiden Analytical, UK), monitoring m/z ratios of 28 (N₂), 30 (NO), 32 (O₂), 40 (Ar), 44 (N₂O), 46 (NO₂). The catalytic performance was evaluated in terms of N₂O conversion (6) and selectivity toward N₂ (7).

$$GHSV = \frac{Q}{V_{cat}}$$
(5)

$$X_{N_2O} = \frac{F_{N_2O,in} - F_{N_2O,out}}{F_{N_2O,in}} \cdot 100\%$$
(6)

$$S_{N_2} = \frac{F_{N_2,out}}{F_{N_2,out} + F_{NO_2,out} + F_{NO_2,out}} \cdot 100\%$$
(7)

Herein, Q denotes the total volumetric flow rate and F_i indicates the molar flow rate of the i-species.

3. Results and discussion

-

3.1 Catalysts characterization

Characterizations concerning the textural structure and the chemical composition (XRF) of the Ni_xCo_{3-x}O₄ sample are briefly listed in Table 1. The catalyst investigated in this study exhibited a SSA value lower than expected. Indeed, it is reported that the surface area of Co₃O₄ oxide is about 4 m²/g, and the partial replacement of divalent metals in M_x Co_{3-x}O₄ oxide increases the SSA value (Li et al., 2016). Thus, the presence of nickel in the Co₃O₄ structure, should have resulted in a wider surface area. On the contrary, the limited surface area and the low porosity obtained in the sample investigated suggest that the preparation procedure led to a peculiar high compact structure.

Table 1: SSA, pore volume, pore radius, Ni/Co ratio (XRF) of Ni_xCo_{3-x}O₄ catalyst

Sample	SSA	Pore volume	Pore radius	Ni/Co ratio
	(m²/g)(cm³/g)		(nm)	
Ni _x Co _{3-x} O ₄	4	0.006	1.7	0.8

The morphology of $Ni_xCo_{3-x}O_4$ displayed in the SEM/EDX images (Figure 2) is characterized by a filamentous structure. Moreover, the EDX elemental mapping clearly illustrates the uniform distribution of Ni, Co and O throughout the sample and confirms the formation of a nickel-cobalt mixed oxide.

The XRD pattern of the catalyst (Figure 3) exhibits diffraction peaks typical of standard cubic NiCoO₂ mixed oxide (JCPDS 10-0188) at 37°, 43°, 62°, 74° and 77° 2Θ values. In addition, two peaks indicating a Ni-Co alloy formation are present (Qazi et al., 2021) at 44,6° and 52° 2Θ values.

Figure 2: SEM/EDX images of Ni_xCo_{3-x}O₄ catalyst

Figure 3: XRD pattern of Ni_xCo_{3-x}O₄ catalyst

3.2 Catalytic activity of Ni_xCo_{3-x}O₄ in N₂O decomposition

The catalytic activity of Ni_xCo_{3-x}O₄ in N₂O decomposition in presence of two different feed streams, respectively containing 10 vol% and 5 vol% of N₂O, is shown in Figure 4. The total selectivity of the system toward N₂ was achieved, confirming that the N₂O was converted without any subproducts, as NO and NO₂. The results in terms of N₂O conversion highlights the strong influence of the reactants concentration on the catalytic performance. In the whole temperature range investigated, by halving the N₂O and O₂ concentrations from 10 vol% to 5 vol%, keeping unchanged the other operating conditions, higher N₂O conversion values were reached. In particular, the change in N₂O concentration led to a substantial increase in conversion from 54% to 79% at 600°C, at high values of GHSV (15000 h⁻¹, similar to the ones of a typical industrial plant). This behavior can be ascribed to the textural properties of the sample combined with the inhibitory effect of the oxygen. It can be expected that increasing concentrations of both N₂O and O₂ in gaseous stream limit the reaction mechanism rate over the catalyst surface, where the highly compact structure and low porosity hinder

the interaction of the species with the active sites. As result, the high concentration of the reactants combined with the peculiar textural properties of the catalyst make the N₂O decomposition unfavored.

As explained in section 1, the N₂O decomposition is limited by the first N-O bond cleavage which forms an adsorbed O atom and a gaseous N₂, and the second N-O bond cleavage that occurs on the oxygen-occupied site. Site pairs that permit facile adsorbed O atoms migration and combination are required to have high activity. Furthermore, it is reported that to optimize N₂O decomposition rates for applications, the specific reaction routes and site requirements for different catalysts should be considered (Lin et al., 2021). For example, the reaction rate of the catalyst can be enhanced increasing the metal loading to obtain closely spaced site pairs and facilitate O-O combination.

The results obtained from the experimental tests so suggest that the Ni_xCo_{3-x}O₄ catalyst could be suitable for the catalytic decomposition of gaseous stream containing up to 5 vol% of N₂O, also in presence of O₂. Further study may be devoted to the optimization of the operating conditions, in order to increase the catalyst performance in presence of higher concentrations of N₂O, typical of tail streams exiting for example from adipic acid production plants (Konsolakis, 2015), as well as to the influence of other typical components of tail gases, such as H₂O.

Figure 4: Activity of $N_{1x}Co_{3-x}O_4$ in N_2O decomposition. Operating conditions: GHSV = 15000 h⁻¹, 1 atm, feed streams: 10 vol% N_2O , 10 vol% O_2 and 5 vol% N_2O , 5 vol% O_2 in Ar.

4. Conclusions

In this work a nickel-cobalt cubic mixed oxide (Ni_xCo_{3-x}O₄) was prepared, characterized, and tested for the abatement of N₂O. In particular, the performance of the catalyst for the N₂O decomposition reaction was evaluated in presence of oxygen, by varying the O₂ percentage from 5 vol% to 10 vol%, keeping unchanged the O₂/N₂O feed ratio and the other operating conditions. The results demonstrated that at lower O₂ concentration the N₂O conversion increases from 54 % to 79 %, confirming the inhibitory effect of oxygen. Indeed, as previously explained, since the catalytic cycle is closed by molecular oxygen desorption via Langmuir-Hinshelwood or Eley-Rideal mechanism, the increasing presence of oxygen hinders the adsorption of N₂O on the catalytic surface. Moreover, the textural analysis performed on the catalyst showed that it is characterized by a highly compact structure, thus the low surface area and low porosity limit the availability of the active sites. As result, the high concentration of the reactants combined with the peculiar textural properties of the catalyst make the N₂O decomposition unfavored. Nevertheless, in all the experimental tests and in the whole temperature range investigated (350 – 600 °C), the total selectivity of the system was achieved, without the formation of undesired by-products such as NO or NO₂. In conclusion, the results obtained in this work have shown that Ni_xCo_{3-x}O₄ cubic mixed oxide allows to successfully treat gaseous stream containing up to 5 vol% N₂O, also in presence of oxygen.

References

- Abu-Zied B.M., Soliman S.A., Abdellah S.E., 2015, Enhanced direct N₂O decomposition over Cu_xCo_{1-x}Co₂O₄ ($0.0 \le x \le 1.0$) spinel-oxide catalysts, Journal of Industrial and Engineering Chemistry, 21, 814–821.
- Ashok A., Kumar A., Ponraj J., Mansour S.A., Tarlochan F., 2019, Highly active and stable bi-functional NiCoO₂ catalyst for oxygen reduction and oxygen evolution reactions in alkaline medium, International Journal of Hydrogen Energy, 44, 16603-16614.
- Hu X., Wang Y., Wu R., Zhao Y., 2021, N-doped Co₃O₄ catalyst with a high efficiency for the catalytic decomposition of N₂O, Molecular Catalysis, 509, 111656.
- Kapteijn F., Rodriguez-Mirasol J., Moulijn J.A., 1996, Heterogeneous catalytic decomposition of nitrous oxide, Applied Catalysis B: Environmental, 9, 25-64.
- Konsolakis M., 2015, Recent Advances on Nitrous Oxide (N₂O) Decomposition over Non-Noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects, ACS Catal., 5, 6397–6421.
- Konsolakis M., Aligizou F., Goula G., Yentekakis I.V., 2013, N₂O decomposition over doubly-promoted Pt(K)/Al₂O₃-(CeO₂-La₂O₃) structured catalysts: on the combined effects of promotion and feed composition, Chem. Eng. Journal, 230, 286-295.
- Li Z., Cang-cang W., Xiu-feng X., 2016, Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides, Journal of Fuel Chemistry and Technology, 44, 1494-1501.
- Lin F., Andana T., Wu Y., Szani J., Wang Y., Gao F., 2021, Catalytic site requirements for N₂O decomposition on Cu-, Co-, and Fe-SSZ-13 zeolites, Journal of Catalysis, 401, 70-80.
- Liu Z., He F., Ma L., Peng S., 2016, Recent Advances in Catalytic Decomposition of N₂O on Noble Metal and Metal Oxide Catalysts, Catal. Surv., 20, 121-132.
- Miao M., Zhang M., Kong H., Zhou T., Yang X., Yang H., 2021, Progress in Catalytic Decomposition and Removal of N₂O in Fluidized Bed, Energies, 14, 6148.
- Palma V., Martino M., Pisano D., Ciambelli P., 2016, Catalytic activities of bimetallic catalysts for low temperature water gas shift reaction, Chemical Engineering Transactions, 52, 481-486.
- Qazi U.Y., Javaid R., Zahid M., Tahir N., Afzal A., Lin X., 2021, Bimetallic NiCo-NiCoO₂ nano-heterostructures embedded on copper foam as a self-supported bifunctional electrode for water oxidation and hydrogen production in alkaline media, Catalysts, 46, 18936-18948.
- Yan L., Ren T., Wang X., Ji D., Suo J., 2003, Catalytic decomposition of N₂O over M_xCo_{1-x}Co₂O₄ (M = Ni, Mg) spinel oxides, Applied Catalysis B: Environmental, 45, 85-90.
- Yu H., Wang X., 2018, Apparent activation energies and reaction rates of N₂O decomposition via different routes over Co₃O₄, Catalysis Communications, 106, 40-43.