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This contribution addresses the problem of optimizing the operation of a batch process where energy is supplied 
electrically from mixed traditional and renewable sources. The case study considered here is that of an 
evaporator for the synthesis of titanium dioxide nanoparticles, where an energy-demanding distillation step is 
optimized and scheduled taking into account the forecasted availability of energy from renewables. The goal is 
to optimize the utilization of the energy from the renewable sources, without violating process and product 
constraints. A method is outlined to assess whether predictive demand-side management is a viable option and 
how to integrate it into the operation of a batch process based on the process characteristics.   

1. Introduction 

One of the measures that are necessary to mitigate climate change is to decrease the carbon intensity of the 
industrial and energy sectors. This requires, among other things, to increase the amount of energy supplied 
from renewable sources, while at the same time cutting down on the use of fossil fuels (IPCC, 2014). The 
electrification of the chemical and process industry can have a substantial impact, due to the energy-intensive 
nature of many unit operations. While on one hand, a large portion of the energy used in these sectors is in the 
form of heat, on the other the number of technologies for the electrification of traditional processes is increasing. 
Furthermore, electrical heating is already a valid technological solution for many medium and small productions 
due to the technical and operational simplicity of the equipment, and when electricity is supplied by renewable 
sources, its carbon intensity significantly decreases (Madeddu et al., 2020). 
Renewable energy sources like solar and wind are among the best candidates to power the energy transition, 
although they are characterized by intermittency and non-dispatchability. In other words, their output changes 
more or less predictably during the day and across seasons without being able to control it. These characteristics 
can be problematic when integrating them in the energy mix, as they require the end users to make up for the 
lack of flexibility from the supply side. This can deter investments in renewable energy generation, due to the 
risk of not being able to exploit the installed capacity at its maximum potential (Egli, 2016). The process industry, 
however, can provide the necessary flexibility to ensure a functional integration of non-dispatchable energy 
sources. Batch processes can be very useful in this regard, as their energy consumption envelope is peaked in 
its nature and can be modified in different ways to match the times of the availability of renewable energy 
availability. The goal of this contribution is to showcase how this flexibility can be exploited to make better use 
of available renewable sources and to summarize the requirements for this to be possible.  

2. Description of the process 

The process used as case study is the synthesis of titanium dioxide nanoparticles. In this process, a suspension 
of nanoparticles is driven towards an equilibrium particle size distribution, which depends on the composition of 
the suspension and its temperature (Vorkapic and Matsoukas, 2005). The process occurs over a time window 
of six hours, and it essentially involves the distillation of a byproduct of the reaction. The plant consists of an 
electrically heated reaction vessel that is coupled to an overhead vapor condenser. The vessel is initially loaded 
with a mixture of water and titanium isopropoxide (precursor). The precursor is hydrolyzed by water and   
generates a pool of titanium dioxide primary particles and an alcoholic byproduct that is miscible in water. A 
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distribution of aggregates of different particle sizes is produced as a result of agglomeration and 
deagglomeration processes. The byproduct of reaction promotes the agglomeration process and as a result, 
the forming of larger aggregates. In order to obtain a particle population with smaller sizes, the alcohol needs to 

be evaporated under vacuum. The heating power �̇�(𝑡) 
and the evaporator pressure 𝑃(𝑡) are manipulated to 
control the process. A mathematical model of the 
process consisting of mass and energy balances, the 
vapor-liquid equilibrium equations and the moment 
balance equations of the particle size distribution was 
developed and presented in previous work. The state of 
the system is given by the the moles of water and 
alcohol in the liquid phase, the temperature of the liquid, 
the moments of the particle size distribution and the 
fraction of alcohol  bound to the surface of the 
aggregates. The model is compactly represented by 
using the state vector 𝒙 = (𝑛𝑊, 𝑛𝐴, 𝑇, 𝜇0, … , 𝜇𝑁−1, 𝑠)T. 
From the moments, it is possible to compute an average 
particle size 𝑍 = 𝑍(𝜇0, … , 𝜇𝑁−1) which is used to 
characterize the product quality. The vector 𝒖 = (�̇�, 𝑃)

T 
is referred to as the input vector. The evolution of the 
system is described by a set of differential equations 
�̇� = 𝒇(𝒙, 𝒖). The instantaneous electrical power 
consumption of the process outlet �̇� = �̇�(𝒙, 𝒖) is the 

sum of the heat input to the evaporator and the electrical power necessary to condense the vapor at the process 
conditions. The condenser operates with a coefficient of performance COP, that is the ratio of the heat removed 
by the condenser to the supplied electrical energy. A schematic diagram of the process is shown in Figure 1, 
where the electrical connections are also shown.  
The power generation is split among a renewable generator �̇� (non dispatchable and with finite capacity) and 
the grid �̇� (flexible). The energy consumption is split among the process and one additional sink �̇�, that reflects 
the ability to make use of the residual generation from renewables. Any excess power generation (�̇�) is wasted.  

3. Economic optimization of the process 

The goal of the optimization is to schedule and to control the process such that an economic cost function 𝐽 is 
minimized, and constraints are satisfied. The process is controlled by modifying the input variables over time 
within specified hard bounds (trajectory optimization) and by manipulating the starting time of the batch (process 
scheduling).  

min
𝒖(𝑡),𝒙(𝑡),𝑡0

 𝐽 = ∫ 𝜙(𝒙(𝑡), 𝒖(𝑡), 𝑡)d𝑡
𝑡0+Δt

𝑡0

 subject to:  (1-a) 

 
d𝒙

d𝑡
 = 𝒇(𝒙, 𝒖) for all 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 (1-b) 

 𝒙(𝑡0) = 𝒙0  (1-c) 

 𝒖min ≤ 𝒖(𝑡) ≤ 𝒖max for all 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 (1-d) 

 𝑡0,min ≤ 𝑡0 ≤ 𝑡0,max  (1-e) 

 𝟎 ≤ 𝑪(𝒙(𝑡), 𝒖(𝑡)) for all 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 (1-f) 

 𝟎 ≤ 𝑪𝑓(𝒙(𝑡0 + Δ𝑡), 𝒖(𝑡0 + Δ𝑡))  (1-g) 

In the case of the nanoparticle synthesis, a terminal constraint (𝑪𝑓) is used to enforce the quality of the product 
at the end of the process. One suitable choice as economic indicator is the total cost of energy of the process, 
and is obtained by setting 𝜙(𝒙, 𝒖, 𝑡) = EP(𝑡) ⋅ �̇�(𝒙(𝑡), 𝒖(𝑡)), where EP(𝑡) is the energy price at time 𝑡 and �̇�(𝒙, 𝒖) 

 

Figure 1: process diagram for the case study. The 

dashed lines represent electrical connections with the 

power sources. The arrows denote the direction of  

flow of energy.  
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the electrical power consumption of the process. If energy is available at a constant price, then the optimal 
control policy is the one that minimizes the total energy consumption, and the starting time is irrelevant. In 
practice however, energy can be available at a variable price for several reasons, for example if the plant 
operator participates in demand-side management programs (Palensky and Dietrich, 2011) or if it can source 
its energy from an in-house available generator. In Tamagnini and Engell (2022), one scenario was considered 
where the starting time of the process was fixed and electrical power from a renewable source was available at 
a discounted price inside a predicted time window, with unlimited capacity and no restrictions on its use. In this 
work, the case where the renewable generator is subject to capacity constraints is investigated, explicitly taking 
into account the possibility to recover the leftover capacity. Let  �̇�(𝑡) be the renewable power capacity at time 𝑡. 
It is assumed that the power from the renewable source can be absorbed at zero price from the renewable 
source until depletion, while the electrical grid supplies the remainder at a constant price EP. Once the process 
trajectory has been established, the power consumption from the grid �̇�(𝑡) is given by the following relationship: 

�̇� = {
�̇� − �̇�, �̇� ≤ �̇�
0, otherwise

 (2) 

The difference �̇� − (�̇� − �̇�) is the residual renewable capacity after the allocation of the process. This capacity 
can be used to generate an additional revenue (for example by reselling it to the grid or to power other processes 
in the plant) or savings (e.g. by storing the excess energy in a battery). This opportunity is modeled by means 
of a simple rule. Let �̇� be the maximum level of residual capacity that can be utilized. The recovered capacity �̇� 
is calculated as follows (the residual capacity is consumed to the maximum possible extent): 

�̇� = {
�̇� − (�̇� − �̇�), �̇� − (�̇� − �̇�)̇ ≤ �̇�

�̇�, otherwise
 (3) 

The difference �̇� = �̇� − (�̇� − �̇�) − �̇� is the wasted renewable capacity. 
The economic performance indicator to minimize is the total cost of the energy supplied by the grid for the first 
process minus the earnings made by recovering the residual capacity: 

𝐽 = EP ∫ �̇�(𝒙(𝑡), 𝒖(𝑡), 𝑡)d𝑡
𝑡0+Δt

𝑡0

− RP ∫ �̇�(𝒙(𝑡), 𝒖(𝑡), 𝑡)d𝑡
𝑡0+Δt

𝑡0

⋅ (4) 

Where RP is the value of the recovered energy from renewable sources (recovery price, that similarly to the 
electricity price is constant throughout the process time window). 
A model for the renewable capacity as a function of time is assumed as coming from a solar panel installation 
as the renewable generator, and is modelled using the following expression: 

�̇�(𝑡) =
𝐴

1 − 𝑏
max (0, cos (2𝜋

𝑡 − 12

24
) − 𝑏) (5) 

The term 𝐴 is the apex power generation at 𝑡 = 12. The term 𝑏 is an offset parameter that increases or decreases 
the hours of renewable generation. These are related to 𝑏 as: 𝑡�̇� =

24

𝜋
cos−1 𝑏. 

Two solution approaches are now considered: one where the trajectory of the process is fixed and one where 
the full optimization problem (including the trajectory of the process) is solved. 

3.1 Optimal scheduling of the process – fixed trajectory 

In this approach, only the starting time 𝑡0 of the process is scheduled, a precomputed input trajectory 𝒖(𝑡) =

𝒖∗(𝑡 − 𝑡0) is applied to the process. The input is assumed to be the one that minimizes the overall energy 
consumption of a batch under the constraints stated above. The resulting trajectory of the process, and hence 
the power consumption profile �̇�(𝑡) = �̇�∗(𝑡 − 𝑡0) can be used to compute the cost function (4) as a function of 
𝑡0 only. The resulting optimization problem is nonlinear and there are multiple and equivalent solutions under 
certain circumstances. Furthermore, the cost function may be nonconvex, depending on the exact shape of the 
capacity profile or the power consumption profile. Given the simplicity of the problem, rather than using a 
gradient based search, it is possible to solve the problem by discretizing the solution space, evaluating the cost 
function for all the values of 𝑡0, and selecting the solution based on the cost and some additional criteria, for 
example choosing the minimum 𝑡0 that results in the minimum cost. 

3.2 Optimal scheduling of the process – flexible trajectory 

In this approach, both the starting time of the process, 𝑡0 and the input 𝒖(𝑡) are optimized. The variables are 
discretized in time on finite elements and collocation points. For this work, the input was parameterized by a 
piecewise linear continuous function. The resulting trajectory is the solution of the differential equation (1-b). 
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The problem was implemented in Python using the automatic differentiation toolbox “CasADi” (Andersson et al, 
2019), using IPOPT as optimizer (Wächter and Biegler, 2006). In order to be able to consider the variable 
starting time, the limits of integration in the cost function were replaced with 0 and Δ𝑡, and the time variable was 
substituted with 𝑡 = 𝑡∗ + 𝑡0. It should be mentioned that the problem is still nonconvex and can still admit multiple 
(equivalent) solutions. Additional criteria can be specified in the cost function as small additive penalties, such 
as a cost dependent on the starting time to privilege earlier starting times. 
As a concluding remark to this section, the strengths and weaknesses of the two approaches are highlighted. 
From a purely practical standpoint, the former is more easily applicable. The trajectory to be applied needs not 
to be obtained by optimization, but may be established by practice. This makes it possible to use it even when 
very limited knowledge about the process is available (in fact, the power consumption profile is the only piece 
of information necessary for it to be used). On the other hand, if the profile of the generation capacity is 
significantly different from the one of the power consumption, the second approach is able to use the available 
capacity more effectively, as shown in the power profiles in Figure 2.  

4. Results and discussion 

The optimization was carried out for several combinations of the parameters 𝐴 > 0, 𝑏 ≥ 0, �̇� ≥ 0 and RP/EP ≤

1. The maximum possible power consumption of the process is 13.3 kW (not encountered in practice) when 
both the condenser and the evaporator operate at full power. The energy-optimal trajectory was used in the 
fixed trajectory approach. To summarize the solutions resulting from the two approaches, the grid energy 
percentage, renewable energy percentage and process cost percentage relative to the total energy use of the 
energy-optimal solution are defined: 

Grid energy %𝐸.𝑂. = 100 ⋅
∫ �̇�(𝑡)d𝑡 [Current solution]

∫ �̇�(𝑡)d𝑡 [Energy optimal]
  (6) 

Renewable energy %𝐸.𝑂. = 100 ⋅
∫ �̇�(𝑡)d𝑡 [Current solution]

∫ �̇�(𝑡)d𝑡 [Energy optimal]
  (7) 

Process cost %𝐸.𝑂. = 100 ⋅
𝐽 [Current solution]

EP ⋅ ∫ �̇�(𝑡)d𝑡 [Energy optimal]
 (9) 

The sum of the grid and renewable energy provision percentages can be larger or equal than 100 and denotes 
the total energy consumption of the solution relative to the energy optimal solution. The process cost is 
expressed relative to the energy optimal solution and to the grid energy price. Based on the ability of the 
renewable source to sustain the energy-optimal solution in its entirety and the ability to recover the residual 
generation capacity, four cases are identified. 

4.1 The renewable source is sufficient to sustain the energy-optimal trajectory entirely and it is 
possible to recover the residual capacity entirely 

As long as RP ≤ EP, the flexible trajectory approach solution coincides with the energy-optimal one, because 
any variation in the power profile leads to an increased power consumption and therefore a reduction in the 
recoverable power. Multiple starting times are possible as long as the energy consumption profile of the process 
remains below the renewable generation curve.  

4.2 The renewable source is sufficient to sustain the energy-optimal trajectory entirely and it is not 
possible to recover the residual capacity entirely 

In this scenario, the renewable generation is sufficient to sustain the process entirely, and the residual capacity 
is more than can be recovered. Slight advantages could still be achieved, in theory, if the recovered capacity 
could be increased: that is, if there are points in time where the residual capacity after the process is less than 
the recovery capacity (0 < �̇�(𝜏) < �̇�, for some 𝜏 in the process time window). In such cases, the profit of the 
process could be increased by means of the flexible trajectory approach. In practice, however, the improvement 
was found to be marginal in all the considered cases (|ΔEnergy cost %𝐸.𝑂.| < 1%). 

4.3 The renewable source is insufficient to sustain the energy-optimal trajectory entirely and it is 
possible to recover the residual capacity entirely 

If the energy-optimal power trajectory cannot be supplied by the renewable source entirely, it may be more 
profitable to operate the process less efficiently (with a higher energy consumption than the energy-optimal and 
at the expense of a reduced recovered capacity), such that the consumption of grid power is reduced.  
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The extent of the tradeoff is determined by the ratio RP/EP. In practice, however, only for very low values of 
RP/EP the flexible trajectory solution was found to improve the 
profit, as summarized in Table 1, for 𝐴 = 5, 𝑏 = 0.4 and �̇� = 5. 

Table 1: Comparison of the optimal process cost percentage for 

the fixed and the flexible trajectory approaches for different 

values of the recovery price for the scenario described in 4.3. 

RP/EP 
Process cost %𝐸.𝑂. 
(fixed trajectory) 

Process cost %𝐸.𝑂. 
(flexible trajectory) Diff. 

0.0 40.4 32.2 -8.2 
0.3 27.4 25.0 -2.4 
0.5 18.8 18.7 -0.1 
0.7 10.1 10.1 0.0 
1.0 -2.9 -2.9 0.0 

Table 2: Comparison of the optimal process cost percentage for 

the fixed and the flexible trajectory approaches for different 

values of the recovery price for the scenario described in 4.4. 

RP/EP 
Process cost %𝐸.𝑂. 
(fixed trajectory) 

Process cost %𝐸.𝑂. 
(flexible trajectory) Diff. 

0.0 39.3% 29.5% -9.8% 
0.3 32.4% 24.6% -7.8% 
0.5 27.8% 22.5% -5.3% 
0.7 23.2% 17.7% -5.5% 
1.0 16.2% 11.0% -5.2% 

4.4 The renewable source is insufficient to sustain the energy-optimal trajectory and it is not possible 
to recover the residual capacity entirely  

In this case, the flexible trajectory approach can actually lead to a measurable improvement of the cost upon 
the fixed trajectory approach, even when the residual power can be recovered with RP/EP ∼ 1, as shown in 
Table 2 for 𝐴 = 5, 𝑏 = 0.0 and �̇� = 1. As expected, the solutions of the flexible trajectory optimization use more 
energy overall than the fixed trajectory ones. This is visible in the second plot of Figure 3, where the two 
approaches are compared in terms of relative energy use. The recovery price determines how much the flexible  
trajectory solution departs from the fixed trajectory one. The increased energy consumption, however comes  
with a reduction of the power consumed from the grid and an increased renewable power use. Furthermore, the 
wasted renewable capacity is reduced, compared to the fixed trajectory approach, as visible in Figure 2.  

5. Conclusions and further work 

In this work it was outlined how process scheduling and trajectory optimization can be used in combination to 
adapt the operation of a process to the availability of renewable power, and some examples of the features that 

Figure 2: Comparison of the power 

profile resulting from the fixed trajectory 

approach and the one resulting from the 

flexible trajectory approach for the 

scenario described in 4.4, with A =

5, b = 0.0, L̇ = 1 and RP/EP = 0.3. 
 

Figure 3: Comparison of the grid and renewable energy provision percentages for the fixed and flexible 

approaches, for different values of the recovery price to energy price ratio for the scenario described in section 

4.4. All the points are calculated with 𝐴 = 5, 𝑏 = 0 and �̇� = 1. The diagonal lines denote points with the same 

total energy consumption. The solid black line corresponds to a total energy consumption equal to the one of 

the energy-optimal solution. The cost for each solution is given in Table 2. 
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the solutions possess were provided. The main takeaways are that, when the renewable capacity is limited, 
further reductions in the consumption of grid power can be obtained by adapting the trajectory of the process 
accordingly, and this is especially true when there is a limited ability to recover the residual capacity.  
In the situation where there is an excess of renewable generation or when the plant is flexible enough to 
consume power at its maximum potential, scheduling the process operated with the energy-optimal trajectory is 
already sufficient in reducing the reliance on grid power and can be used by the plant operator to easily integrate 
the renewable generation.  
Both approaches can be thought of as predictive demand-side management practices. The schedule or 
trajectory can be computed in advance based on seasonal values of the renewable capacity, although if a 
forecast is available for the generation capacity, it is also possible to optimize the trajectory on a day-by-day 
basis.  
Other demonstrations of predictive demand side management exist in the literature, such as Kelley et al., 2020, 
however they use the market price of energy as driver for the optimization. While from an economic standpoint 
this is the best approach, in practice it would only be relevant for enterprises that can directly participate in the 
electricity market, thus limiting its applicability. Explicitly taking the renewable generation into account, on the 
other hand, makes the practice accessible for small and medium enterprises as well and can lead to a greater 
impact on the overall energy consumption patterns. Nonetheless, the methods presented here can be extended 
with minor effort to situations where different energy tariffs are available at different times of the day. 
As a concluding remark, it is to be pointed out that the problem solved in this work is a “toy problem” in 
comparison to real-world scheduling problems, where a number of processes have to be allocated under 
stringent sequencing and production constraints. In other words, the scenario considered here benefits from a 
high flexibility with respect to timing. It can be assumed, that when this flexibility is reduced and the process is 
locked into place time-wise, then the trajectory optimization will play a more important role in making the best 
use of the available renewable generation capacity.  

Nomenclature

𝐴 – Renewable power generation at solar apex, kW  
𝑏 – Renewable power generation offset, -  
�̇� – Electrical power consumption of the process, kW  
EP – Grid energy price, €/kWh 
�̇� – Grid power consumption, kW 

�̇� – Maximum recoverable residual capacity, kW  
�̇� – Renewable generation capacity, kW 
RP – Recovery price for the residual capacity, €/kWh 
�̇� – Recovered residual capacity, kW 
�̇� – Wasted renewable capacity, kW 
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