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Renewable energy and carbon dioxide capture and storage can cut carbon dioxide emissions, and negative
emissions technologies are effective methods of carbon dioxide removal. The integration of the three is an 
important approach to mitigate surface temperature rise and achieve the climate change vision. This paper 
presents an improved algebraic targeting approach for multi-period energy planning integrating fossil energy,
renewable energy, carbon capture and storage, and negative emission technologies. In this work, the risk
hedging effect of negative emission technologies and the operational lifetime of carbon capture and storage are
considered to reduce the amount of carbon capture and storage deployed. The approach can reduce the 
economic costs, environmental costs, and likelihood of stranded assets in low-carbon energy planning. This 
multi-period algebraic targeting approach is demonstrated through a case study. The results show that multi-
period low-carbon energy planning can achieve better deployment of resources and technologies and reduce
the pressure to reduce carbon emissions in the early stages of planning.  

1. Introduction
The tipping point of climate catastrophe is approaching. Achieving the 1.5°C temperature control temperature 
targets of the Paris Agreement will require more urgent and ambitious action on deep CO2 reductions. One
important way to reduce CO2 is to promote a transition from fossil to renewable energy sources (You and 
Kakinaka, 2022). However, the current role of fossil energy cannot be completely replaced. carbon capture and 
storage (CCS) can allow the use of fossil fuels while significantly reducing the amount of CO2 emitted into the 
atmosphere. These two carbon reduction measures cannot really achieve net zero emissions. The importance 
of carbon dioxide removal (CDR) has emerged. Negative emission technologies (NETs) is the predominant
means of delivering CDR. NETs can remove pre-existing CO2 from the atmosphere and offset carbon emissions 
from hard-to-decarbonise sectors (Pires, 2019). The maturity of NETs is currently limited, but timely deployment 
of NETs can better play their risk-hedging role in energy planning and contribute to safe and sustainable 
achievement of climate goals. All three of these approaches play an integral role in mitigating climate change, 
and there is a growing body of research on the integration of carbon reduction and decarbonisation technologies. 
Carbon Emission Point Analysis (CEPA) has been established in recent years and is widely used. Originally 
developed by Tan and Foo (2007), CEPA is based on traditional pinch analysis principles to provide policy 
makers with information on sustainable energy deployment (Andiappan et al., 2019). Subsequently, a graphical 
targeting method known as the Energy Planning Pinch Diagram (EPPD) was developed to analyse the minimum
required amount of renewable energy resources while considering the maximum amount of conventional fossil 
fuels that could be used (Tan and Foo, 2007). Later, approaches such as cascade analysis (Foo et al., 2008),
the automated targeting model (Lee et al., 2009), and algebraic target approaches (Sahu et al., 2014) have 
been developed, which overcome some of the limitations of graphical approaches. Nair et al. (2021) recently 
developed a generic algebraic targeting approach for integrating renewable energy, CCS, and NETs. This 
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approach eliminates the iterative procedure needed during the graphical targeting approach (Nair et al., 2020) 
,enabling more convenient handling of large data sets (Nair et al., 2021). 
The above-mentioned work can only carry out low-carbon energy planning for a certain country or sector within 
a year. In past work, Ooi et al. (2014) proposed multi-cycle retrofit planning, but they only considered the addition 
of CCS to the power generation sector planning.  In practice, different carbon reduction targets are usually set 
at different stages, such as China's commitment to work towards carbon peaking by 2030 and carbon neutrality 
by 2060. In other words, due to factors such as the maturity of carbon reduction measures and CDR, the 
reduction process must be a gradual one. A multi-period low-carbon energy planning that integrates various 
carbon reduction measures and CDR is a more reasonable option. 
This work proposes an improved multi-period algebraic targeting approach that enables the integration of fossil 
energy, renewable energy, CCS and NETs on the one hand, and joint multi-cycle planning on the other. This 
multi-period energy planning incorporates the concept of time periods, which allows for a more optimal 
deployment of resources and technologies by taking into account the input time of NETs and the operational 
lifetime of CCS systems. At the same time, multi-stage energy planning can also alleviate the pressure to reduce 
carbon emissions in the early stages. 
The paper is organised as follows. A formal problem statement is given in the next section. Section 3 gives the 
general procedure for the multi-period algebraic targeting approach. Section 4 illustrates the use of the approach 
with a case study of the enhanced NDC policy scenario in China. Finally, the paper ends with the conclusion 
and an outlook for future work. 

2. Problem Statement 
The following is the statement of multi-period low-carbon energy planning problem. 
 Given a set of time intervals t∈T, the time intervals can be formulated by planners according to the energy 

planning goals or policies of a given region/sector, it is assumed that there are a total of H time intervals. 
 Given a set of energy sources i∈I, comprised of fossil energy sources and renewable energy sources. 

Each energy source has a given energy supply FSt,i and its respective carbon emission factor CS,i. The 
product of its modified supply FXt,i and CS,iin t is its carbon emission load ∆mSt,i. The total carbon emission 
load of all energy sources in t is ∆mZt. 

 Given a set of energy-producing NETs (EP-NETs) a∈A and energy-consuming NETs (EC-NETs) b∈B. 
The carbon emission factor of EP-NET and EC-NET are CNP,a and CNN,b . The energy produced and 
consumed in t are FNPt,a and FNNt,b. 

 Carbon emission factors for NETs that generate/consume insignificant amounts of energy, such as 
afforestation, are assumed to be zero and are not entered in the cascade table. Total carbon emissions 
absorbed in t is ∆mNt. 

 Given a set of regions/sectors j ∈ J. The total energy demand in t is ∑ FDt,jj  and the carbon emission 
constraint is ∆mLt. 

 The sum of ∆mLt and ∆mNt in t is the modified carbon emission constraint ∆mXt. The difference between 
∆mZt and ∆mXt is the amount of carbon emissions ∆mRt that needs to be reduced in t. The quotient of ∆mXt 
and FDt,j is the target carbon emission factor CDt,j in t. 

 It is assumed that it is not necessary to wait until NET is available on a large scale before deploying it, but 
rather deployment is done as soon as possible (Obersteiner et al., 2018), i.e., integrating the selected 
NETs into the energy planning process as soon as they have a predicted potential value. 

 It is assumed that the operating lifetimes (LT), parasitic power losses (X) and removal rates (RR) of the 
CCS equipment remain constant.  

3. Multi-period algebraic targeting approach 
In this approach, the energy loss due to CCS is compensated by additional energy from renewable sources. 
Table 1 shows the basic structure of the cascade table, which presents the data from the calculations of the 
algebraic targeting approach. The calculation framework is shown in Figure 1. 
Two illustrations of the cascade table are as follows. 

a. Each row in the cascade table represents a level k. 
b. Emission factors are filled in the cascade table in ascending order. Fill in the last level in column Ck with 

an arbitrarily large value for calculation purposes. 
The flow chart is illustrated in Figure 1. 

(S1) The carbon emission factor(Ck) for the energy sector after the CCS retrofit is calculated in the first step. 
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(S2) The formula in yellow box ① gives the corrected energy supply (FXt,i) in t, i.e. the supply of fossil energy 
after being offset or increased by the NETs, and the carbon load that still needs to be reduced in t (∆mRt) 

(S3) The formula in green box ② gives the theoretical deployment (FTR,k) and the actual deployment (FAR,k) 
of CCS in t. 

(S4) The formula in blue box ③ gives the demand for compensatory energy (FCOMPt), the supply of energy in 
the energy sector after completion of the CCS deployment (FAlt,k) and the final net supply of energy (FNt,k). 

(S5) The formula in red box ④ gives the energy cascade( δt(k)) and the emission cascade (εt(k)) in t. 
(S6) In the absence of an intentional explanation, i or k takes the values n-1, n-2,…2. 
(S7) The first step calculates the carbon emission factor for source i after retrofitting with CCS. 

Table 1: Basic structure of a cascade table for multi-period algebraic targeting approach 

T Ck ∑ FDt,jj   FNPt,b FSt,i FNNt,b FXt,i FTR,k ∆FTR,k FAR,k FAlt,k FNt,k δt(k) εt(k) ∆Ck 

t1 

           δ1=0   
C1  FNP1,1  FNN1,a FX1,1     FN1,1  ε1(1)=0  
           δ1(1)  ∆C1 
C2  FNP1,2  FNN1,2 FX1,2     FN1,2  ε1(2)  
           δ1(2)  ∆C2 
…  … … … … … … …  …  …  
           …  … 
… ∑ FD1,jj   … … … … … … … FAl1,k …  …  
           …  … 
…  … … … … FTR,n-2 ∆FTR,n-2 FAR,n-2 FAl1,n-2 FN1,n−2  …  
           …  … 
Cn-1  FNP1,n-1 FS1,n-1 FNN1,n-1 FX1,n-1 FTR,n-1 ∆FTR,n-1 FAR,n-1 FAl1,n-1 FN1,n−1  ε1(n-1)  
           δ1(n-1)  ∆Cn-1 
Cn            ε1(n)  

… … … … … … … … … … … … … … … 
tn … … … … … … … … … … … … … … 
 

 

Figure 1: Flow chart of the computational process of the multi-period algebraic targeting approach 

Calculate FAlt,k = FAR,k × (1 − X)  

Calculate  ∆FTR,k = FTR,k − min ��FXt,i�k� 

Calculate FAR,k = min ��FXt,i�k� 

Calculate FTR,k=
 ∆FTR,k+1×(Ck+1RR−CCOMPX)

CkRR−CCOMPX
 

k=k-1 

Calculate εt(k) = εt(k−1) + (δt(k−1) × ∆Ck−1) 

End 

No 

No 

Calculate δt(k) = δt(k−1) + FNt,k 

Calculate FNt,k = (FCOMPt)k + FAlt,k + �FNPt,a�k − �FNNt,b�k − (∑ FDt,jj )
k
 

Yes 

Calculate FCOMPt = ∑ FAR,k
n
k=1 × X 

Calculate  FAlt,k = (FXt,i)k − FAR,k 

Calculate FAR,k = FTR,k 
Calculate ∆FTR,k = 0 

Yes 
Is FTRm,k ≤ min�(FXt,i)k�?  

Calculate FTR,k = ∆mRt
(CkRR−CCOMPX)×H

 

Determine ∆mZt ,∆mNt , ∆mLt 

Calculate FXt,i= ∆FXt,i 

i=i-1 

No 
Calculate FXt,i=0 

Yes 

Calculate FXt,i= ∆FXt,i 

Is ∆FXt,i ≥ 0 ?  

Calculate ∆FXt,i = ∑ FSt,ii
n−1 − FZt 

Determine FNPt,a , FNNt,b , FSt,i 

Calculate FZt = ∑ FNPt,a − ∑ FNNt,b ba  

Start 

Calculate Ck = Cs,i×(1−RR)

1−X
 

Is 𝑘𝑘∈Sources at level without CCS? 

① 
② 

③ 

④ 
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4. Case Study 
This section uses China's enhanced 2030 Nationally Determined Contribution (NDC) target as a study case. 
The case is divided into two periods, the first (t1) from 2021 to 2025 and the second (t2) from 2026 to 2030. The 
data for energy demand and carbon emission constraints for this scenario are from the synthesis report (PCRPT, 
2020). Data on the potential of EP-NETs comes from the report by Cai et al. (2021). The amount of carbon 
sequestered by AR is extrapolated from de Jong (2021) and the amount of carbon sequestered by SCS is 
extrapolated from Zhou et al. (2021). The emission factors for fossil energy are obtained from Tan et al. (2009). 
The carbon emission factors for NETs are from Ng et al. (2020), and the emission factor for renewable energy 
is zero (House et al., 2011). Due to the limited research on EC-NETs in China under this scenario, their role in 
energy planning is ignored. In other words, EC-NETs are not considered in the calculation process of this case 
for the time being. Table 2 and Table 3 includes raw (Ck, ∑ FDt,jj , FNPt,b,  ∆Ck), process (FXt,i, FTR,k, ∆FTR,k, FAR,k, 
FAlt,k) and result (FNt,k,  δt(k), εt(k)) data for each of two periods (t1 and t2) of low carbon energy planning. All data 
are entered in Table 2 and Table 3 according to their specific meaning corresponding to the row in which their 
carbon emission factor is located. 

Table 2: First period energy cascade table for case studies  

T 
(y) 

Ck(Gt/ 
PWh) 

∑ FDt,jj   
(PWh) 

FNPt,b 
(PWh) 

FSt,i 
(PWh) 

FXt,i 
(PWh) 

FTR,k 
(PWh) 

∆FTR,k 
(PWh) 

FAR,k 
(PWh) 

FAlt,k 
(PWh) 

FNt,k 
(TWh) 

δt(k) 
(PWh) 

εt(k) 
(Gt) 

∆Ck 

t1 

          0.00   
-0.61  2.05*10-3  2.05*10-3     2.05*10-3  0.00  
          2.05*10-3  0.23 
-0.38  8.71*10-2  8.71*10-2     8.71*10-2  4.70*10-4  
          8.92*10-2  0.38 
0.00   38.14 38.14 0.00 0.00 0.00 38.14 55.15  3.44*10-2  
          55.24  0.13 
0.13        1.33 1.33  7.25  
          56.57  0.04 
0.17        95.06 95.06  9.64  
          151.63  0.09 
0.26 212.50   212.50     -212.50  23.31  
          -60.87  0.35 
0.61   20.88 20.88 0.00 0.00 0.00 20.88 20.88  2.20  
          -40.00  0.13 
0.74   38.87 38.87 1.56 0.00 1.56 37.31 37.31  -3.00  
          -2.69  0.24 
0.98   114.61 114.52 113.02 1.18 111.84 2.69 2.69  -3.65  
          0.00  9.02 
10.00           -3.65  

Table 3: Second period energy cascade table for case studies  

T 
(y) 

Ck(Gt/ 
PWh) 

∑ FDt,jj   
(PWh) 

FNPt,b 
(PWh) 

FSt,i 
(PWh) 

FXt,i 
(PWh) 

FTR,k 
(PWh) 

∆FTR,k 
(PWh) 

FAR,k 
(PWh) 

FAlt,k 
(PWh) 

FNt,k 
(TWh) 

δt(k) 
(PWh) 

εt(k) 
(Gt) 

∆Ck 

t2 

          0.00   
-0.61  6.15*10-3  6.15*10-3     6.15*10-3  0.00  
          6.15*10-3  0.23 
-0.38  0.23  0.23     0.23  1.41*10-3  
          0.24  0.38 
0.00   52.46 52.46 0.00 0.00 0.00 52.46 69.47  9.25*10-2  
          69.71  0.13 
0.13        1.33 1.33  9.20  
          71.04  0.04 
0.17        95.06 95.06  12.21  
          166.10  0.11 
0.28 233.64   233.64     -233.64  30.75  
          -67.54  0.33 
0.61   28.15 28.15 0.00 0.00 0.00 28.15 28.15  8.77  
          -39.40  0.13 
0.74   40.96 40.96 1.56 0.00 1.56 39.40 39.40  3.65  
          0.00  0.24 
0.98   112.08 111.84 113.02 1.18 111.84 0.00 0.00  3.65  
          0.00  9.02 
10.00           3.65  

In this scenario, the CCS removal rate (RR), parasitic power loss (X) and operating lifetime (LT) (Gao et al., 
2020) are assumed to be: 0.85, 0.15, and 20 y. Energy losses caused by CCS systems are compensated by 
renewable energy sources.  
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After energy correction, the total demand for fossil energy decreased by 0.33 PWh (=(2.05+87.17+6.15 
+233.44)*10-3 PWh) in the two periods, equivalent to a direct reduction of 0.32 Gt (=0.33*0.98 Gt) of carbon 
emissions. Since the assumed CCS operational lifetime (LT) is greater than the total duration of the two periods, 
the CCS can be deployed for two periods of continuous emission reduction. Therefore, CCS retrofits for the 
same energy source sector for different periods are calculated uniformly. The calculated theoretical CCS retrofit 
for both periods of coal sector is 113.02 PWh (=94.145/(0.98*0.85) PWh), and the available transformation of 
coal sector in the second period is less than this value. To meet the continuous use time of CCS as much as 
possible and reduce the one-time investment, the CCS retrofit of coal sector for both periods was 111.84 PWh 
(i.e. the total energy supply from the corrected coal sector in the second period).The remaining 2.69 PWh 
(=114.524-111.836 PWh) of coal sector from the first period was not retrofitted, but rather the oil sector from 
both periods was retrofitted and the CCS retrofit for oil sector was 1.56 PWh (=1.18*(0.98*0.85)/(0.74*0.85) 
PWh). The CCS deployment is reduced by 0.80 PWh (=1.18*2-1.56 PWh) compared to retrofitting the remaining 
coal sector from the first period. The energy cascade in column twelve of Table 2 and Table 3 shows that the 
energy supply for the first and second periods exactly meets the energy demand for both periods. The emissions 
cascade in column thirteen of Table 2 and Table 3 shows that the emissions for the first period are 3.65 Gt more 
than the carbon constraint for that period, while the emissions for the second period are 3.65 Gt less than the 
emissions constraint for that period. According to Table 4 of the overall cascade table, it can be obtained that 
the last item in the column where the emissions cascade is located is zero. This means that in this case scenario 
the CO2 emissions meet the emission constraint. 

Table 4: The overall energy cascade table for the case study 

Ck(Gt/PWh) FN,k(PWh) δ(k)(PWh) ε(k)(Gt) ∆Ck 
  0.00   
-0.61 8.20*10-3  0.00  
  8.20*10-3  0.23 
-0.38 0.32  1.89*10-3  
  0.33  0.38 
0.00 124.62  0.13  
  124.95  0.13 
0.13 2.66  16.44  
  127.61  0.04 
0.17 190.12  21.85  
  317.73  0.09 
0.26 -212.50  50.49  
  105.23  0.02 
0.28 -233.64  52.75  
  -128.41  0.33 
0.61 49.02  10.97  
  -79.39  0.13 
0.74 76.70  0.64  
  -2.69  0.24 
0.98 2.69  0.00  
  0.00 (Pinch) 9.02 
10.00   0.00  

5. Conclusions 
In this work, an improved multi-period algebraic target approach for the integration of fossil energy, renewable 
energy, CCS and NETs was developed. The case study showed that a total of 0.33 PWh of fossil energy demand 
was offset by deploying NETs as soon as possible. In addition, the NETs were able to capture additional 
atmospheric CO2, increasing the carbon emission constraint, reducing the need for CCS deployment and better 
plays the risk hedging role of NETs. Multi-period energy planning can consider the lifetime of the CCS, effectively 
reducing the risk of stranded assets, as shown in the case study, where the unified deployment of two periods 
reduced the one-off deployment of CCS by 0.80 PWh. The case study also showed that the 3.65 Gt of excess 
carbon emissions from t1 can be offset in t2, which presented that the multi-period energy planning also mitigates 
the pressure to reduce carbon emissions upfront. 
Most NETs are currently in the research phase and projections of the future potential of NETs are limited, so 
the data on NETs in this work may not be entirely accurate. As negative emission technologies become more 
mature, their potential will be more accurately predicted. Such techno-economic uncertainties need to be 
factored into planning models. In addition, the variety of NETs that can be used on a large scale will become 
more and more diverse. The integration of NETs in energy planning can be considered in terms of the impact 
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of the preference of the selection of NETs (e.g., economic, sustainability) and the number of NETs selected on 
the technical and economic feasibility of energy planning when multiple NETs can be used. 
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