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The purpose of this paper is to present the predictor improvement for the refined palm oil quality based on the 
adaptive multivariate statistical process control. The time-varying behaviour of the palm oil refinery process has 
made it difficult for the industrial personnel to monitor and sustain the production of high quality refined palm oil. 
It will be very costly for the palm oil industries to repeat the refining process for the low quality refined palm oil, 
to meet the customer’s preference in the market. Alternatively, the quality of the refined palm oil can be 
measured before the process through a systematic quality monitoring, where the information from the quality 
analysis and process condition is integrated to develop an efficient quality prediction tool. The hybrid of time-
series expansion methods namely recursive window (RW) analysis and exponentially weighted recursive 
window (EWRW) analysis along with the nonlinear principal component regression based on the nonlinear 
iterative partial least squares algorithm (NIPALS-PCR) are proposed to develop the adaptive prediction model. 
The predictor coefficient is then used to predict the refined palm oil quality based on the input quality and process 
variables. Through the validation with the online data, both NIPALS-PCR RW and NIPALS-PCR EWRW perform 
better than the NIPALS-PCR static, where the prediction is improved by 95 %.  

1. Introduction 
In real industrial process, accurate prediction of quality variables is important for process control, decision 
making, safety and reliability of industrial processes (Xu et al., 2017). Due to the complexity of batch process, 
natural variation of raw material, process setting for different quality production and chemical interactions at 
different time-series may degrade the quality of the final product (Zhang et al., 2015). The weather and other 
natural factor (e.g., rain, soil acidity, etc.) may affect the quality of Crude Palm Oil (CPO), and consequently 
affecting the production of high quality Refined Bleached Deodorized Palm Oil (RBDPO).To maintain the 
RBDPO quality during the refinery process, an accurate quality control is needed.  
In current practices, the RBDPO quality can only be determined via chemical analysis after the end product exit 
the refining process. If the RBDPO quality did not satisfied the specification, the refining plant opts to go for the 
recycle to reprocess the off-specification RBDPO which eventually increasing the processing cost and lead to 
processing delay. Alternatively, the recycle stream can be prevented using quality prediction tool where the 
RBDPO quality can be predicted at the beginning of the process. The plant operator can perform corrective 
action on the defect quality before the product exits the refining process and the RBDPO quality can be 
systematically guaranteed.    
Multivariate statistical prediction model such as principal component analysis (PCA) is the most common 
method for modeling the relationships between variables. Due to the multicollinearity in the regression 
coefficient, PCA requires to combine with other regression method such as Principal Component Regression 
(PCR) to reduce the variance and covariance between the variables. Conventional PCR model is incapable to 
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trace the nonlinear relation and time-varying behaviour of the refinery process, given it is a linear regression 
model and the predictor coefficient is developed with the assumption that the process mean and variance are 
constant over time-series (Rashid et al., 2017). The accuracy of static prediction model is reduced when different 
time-series data is fed to the model, due to the fact that the trained model is no longer represent the current 
process status (Jeng, 2010). The prediction model must be frequently updated over time to achieve more 
accurate prediction such that the trained model representing the current process status (Jungmittag, 2014).  
This paper would like to improve the quality prediction through adaptive nonlinear PCR prediction model using 
time-series expansion method for designing better prediction tool’s framework. The nonlinear PCR is developed 
through the combination of nonlinear PCA with the ordinary least square regression, where in this paper, 
nonlinear iterative partial least square algorithm (NIPALS) is used as nonlinear PCA. The nonlinear PCR is then 
integrated with the time series expansion methods namely recursive window (RW) analysis and exponentially 
weighted recursive window (EWRW) analysis to develop the adaptive prediction model.  

2. Methodology 
The main idea of this paper is to develop the enhanced framework through the integration of time-series 
expansion method with the nonlinear PCR model as illustrated as in Figure 1. The data is collected from a palm 
oil refinery located in Sabah, Malaysia for three months. The refining plant is producing the RBDPO according 
to the three major quality specifications which are Vietnam, China and Palm Oil Refiners Association Malaysia 
(PORAM).  
 

 

Figure 1: Flowchart of prediction model’s framework 

The requirement of statistical analysis is that, the data must be random and the processing delay must be 
augmented to ensure the data is competent during the development of prediction model. The data is pre-
processed using autocorrelation analysis to ensure the data is random and exhibit zero correlation between 
previous and current data (Aue et al., 2014). The autocorrelation analysis is conducted by calculating the 
correlation of the same time series twice; once in its original form and once is a lagged version of itself over 
successive time interval. The cross-correlation analysis is performed to identify the processing delay, where the 
output data is staggered by the processing lag while the input variables remain intact, to ensure the input 
variables are aligned and matched to the output variables (Rosely et al., 2016). The cross-correlation analysis 
is conducted by identifying the relationship of the data series by calculating a set of correlation values at 
increasing time delay.  
The predictor coefficient is generated using NIPALS-PCR model through the combination of nonlinear iterative 
partial least squares algorithm (NIPALS) and Multiple Linear Regression. NIPALS algorithm is one of the 
nonlinear Principal Component Analysis (PCA) which decomposed the input variables data into principal 
component (PC) through the iteration of score and loading. The dimension reduction has been utilized in this 
study by retaining only relevant PC with optimum amount of cumulative variance percentages which is 100 % 
and 95 % variation, to prevent the overfitting and underfitting of the prediction model’s performance (Kracík and 
Strnadel, 2018). The retained PC from NIPALS algorithm is used as input to the multiple linear regressions to 
generate the predictor coefficients.  
The adaptive prediction model is developed using time-series expansion method, where the new sample 
observation is included in the model, and the predictor coefficient is continuously updated over time-series (Zou 
et al., 2018). For Recursive Window (RW) analysis, the number of observation per window is expanding and 
increases over time-series since the new observation is included without removing the old observation (Pan and 
Lee, 2003). For example, in the first window, the first predictor coefficient, k1 is generated from 1st to nth 
observation number to predict the next observation, n+1th. Then, the data is updated in second window by 
including the n+1th observation without excluding the 1st observation. The predictor coefficient generated from 
the second window is then used to predict the n+2th observation. The process is repeated until all out-of-sample 
observations are predicted. The prediction equation can be expressed as in Eq(1). 
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y�i=k(i-1),1xi,1+k(i-1),2xi,2+k(i-1),3xi,3+⋯+k(n-1),pxn,p (1) 

where 𝑦𝑦� is the predicted output variable; 𝑥𝑥 is the input variables; k is the predictor coefficient between input and 
output variables; i is the observation number (i=1,2,3…,n); j is the input variables (j=1,2,3,…,p). As expressed 
in Eq(1), the previous predictor coefficient is used to predict the next or future observation. The Recursive 
Window analysis can be improved via Exponential Weight Recursive Window (EWRW) analysis. Exploiting the 
advantage of Exponential Weight Moving Average (EWMA) statistic, the EWRW analysis is developed using 
the predictor coefficients from recursive window analysis, by assigning the weights to the coefficients such that 
the present predictor coefficient gets a larger weight, while previous predictor coefficient gets smaller weight. 
The EWRW predictor coefficient sign statistic can be expressed as in Eq(2).   

kEWRW,i= λkRW,i + (1-λ)kEWRW,(i-1) (2) 

where λ is the smoothing constant between 0 and 1. Larger λ indicates little memory on the past predictor 
coefficient, giving more weight to the recent predictor coefficient, while smaller λ indicates the statistic gives high 
importance to past predictor coefficient. 
Monitoring chart is a graph used to monitor the process or quality changes over time (Hrehova, 2016) and 
constructed based on the three RBDPO quality specifications which are China, Vietnam and Palm Oil Refiners 
Association Malaysia (PORAM). The actual and predicted output values are plotted on the chart to visually 
monitor the possible quality deterioration that is the point located beyond the specification limit. The reliability of 
the prediction models can be analyzed from the consistency of the prediction error from training to testing. The 
prediction error is calculated using Mean Absolute Error (MAE) as expressed in Eq(3). 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑|𝑦𝑦 − 𝑦𝑦�|

𝑛𝑛  (3) 

where y� is the predicted output variable; y is the actual output variables; n is the total number of sample. The 
improvement of adaptive prediction models from the static model is measured using Unscaled Mean Bounded 
Relative Absolute Error (UMBRAE) as expressed in Eq(4) (Chen et al., 2017). The percentage improvement is 
calculated as (1-UMBRAE)*100 %, where the positive percentage value indicates the adaptive model performs 
better than the static model and vice versa. 

UMBRAE=

1
n
∑ �

��y�i - yi�adaptive�

��y�i - yi�adaptive�+��y�i - yi�static�
�n

i=1

1-�1n∑ �
��y�i - yi�adaptive�

��y�i - yi�adaptive�+��y�i - yi�static�
�n

i=1 �
  (4) 

3. Results and discussion 
The data is statistically analyzed to ensure data is random and the input-output data is matched to each other. 
Figure 2a is a plot of autocorrelation value against the time lag, where the point falls inside the confidence band 
(blue horizontal line) is said to be statistically insignificant or random. In time-series, the data is sequentially 
taken in time order and cannot be solely used, since the current output quality is not the actual output value for 
the current input. Figure 2b is a plot of cross-correlation value against the time lag, where the three lags (i.e. 
first lag touches the zero correlation value) are determined as the processing lag or processing delay. The input-
output data is matched to each other, when the output data is shifted by the three lags. 

 

Figure 2: (a) Autocorrelation plot, (b) Cross-correlation plot 
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The performance of the prediction models is evaluated in terms of deviation error between the actual and 
predicted output quality using mean absolute error (MAE) as shown in Figure 3. A smaller MAE value, 
approaching to zero value indicates the predicted output is less deviated from the actual output value. The 
comparisons of MAE are made for the NIPALS-PCR static model, NIPALS-PCR RW model and NIPALS-PCR 
EWRW model. The performance of the prediction models was also compared in term of percentage of retained 
variance, by using 100 % and 95 % variation. The qualities of interest for RBDPO are Free Fatty Acid (FFAout) 
content, Moisture content (MOISTout), Iodine Value (IVout) and Colour (COLORout).  
 

 

Figure 3: Mean Absolute Error of (a) NIPALS-PCR using 100 % PC Variation, (b) NIPALS-PCR using 95 % PC 
Variation 

The performance consistency is described as the consistency of MAE range value from the training data to 
testing data. If the prediction model produced a consistent error range, the model is said to be well developed 
and does not suffer from overfitting or underfitting, and any type of data can fit into the prediction model. Figure 
3a shows that the NIPALS-PCR with 100 % PC variation produced inconsistent error from training to testing 
data. The smallest MAE value (approximately to zero error value) during the training indicates that the predicted 
output value perfectly fit and follows the trend of the actual output value, but performed poorly when testing data 
is used as depicted by high MAE value for all prediction models. The NIPALS-PCR model using 100 % PC 
variation retained all the variability in the training data. The model learns the noise in the training data too well 
but does not generalized. The model is said to be ‘overfitted’ and negatively affects the prediction performance 
on new data (Kracík and Strnadel, 2018). The NIPALS-PCR with 95 % PC variation shows a consistent error 
range from training to testing data (Figure 3b), and is said to be well developed and can fit to any type of data. 
The NIPALS-PCR model using 95 % PC variation retained only 95 % of the variability in the training data. Based 
on the prediction error performance, the prediction model with reduced percentage variation is sufficient to 
produce a reliable prediction performance. 
In comparison of prediction analysis performance, the adaptive prediction models which are NIPALS-PCR RW 
model and NIPALS-PCR EWRW model, is outperformed the NIPALS-PCR static model. Although the prediction 
performance for NIPALS-PCR with 100 % PC variation (Figure 3a) shows a significance improvement from 
static model to adaptive model, still there is a large gap of error range from the training, which indicates that the 
model’s overfitting cannot be reduced using adaptive prediction model. For NIPALS-PCR with 95 % PC variation 
(Figure 3b), the performance of adaptive prediction model specifically the NIPALS-PCR RW model, improved 
slightly from the NIPALS-PCR static model, but still producing the error within the error range of training data. 
Table 1 shows the percentage improvement of adaptive prediction model from the static model for NIPALS-
PCR using 95 % PC variations. The adaptive prediction models show significance improvement from static 
model for all RBDPO quality. Both NIPALS-PCR RW and NIPALS-PCR EWRW models give similar average 
percentage improvement that is 95 % which indicates that the two adaptive models have equivalence prediction 
performances.    

Table 1: Percentage improvement of adaptive prediction performance using 95 % PC variation 

Percentage 
Improvement  FFAout MOISTout IVout COLORout 

Average Percentage 
Improvement 

RW model  93.91 % 91.77 % 99.89 % 94.52 % 95.02 % 
EWRW model  93.74 % 92.02 % 99.89 % 94.59 % 95.06 % 
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Monitoring chart is constructed for the actual and predicted value of the RBDPO quality, to observe the accuracy 
of the prediction, by comparing the trend and pattern of the actual and predicted value. The chart is also used 
to determine the specification of the predicted output quality. The quality is categorized in three specifications 
which are Vietnam, China and PORAM. These three specifications have similar quality value for MOIST(< 0.10 
%), IV (50 - 55 Wijs) and COLOR (3 red colour), but for FFA quality, there are two quality value which are < 0.10 
% (PORAM and Vietnam) and < 0.07 % (China). Figure 4 compares the actual and predicted output value of 
FFA quality between the NIPALS-PCR using 100 % PC variation 95 % PC variation.     
As can be seen from Figure 4, the deviation of predicted value from actual value is very large for 100 % PC 
variation (Figure 4a) compared to 95 % PC variation (Figure 4b). The predicted value using 100 % variations 
shows a random trend where the predicted output from three prediction models exceeding the China 
specifications, and to be specific, the predicted output of NIPALS-PCR static model also exceeding the PORAM 
and Vietnam specification. By referring to this prediction performance, the refining plant can produce RBDPO 
quality with PORAM and Vietnam specification using NIPALS-PCR RW and NIPALS-PCR EWRW prediction 
models. Several monitoring and process adjustment actions need to be planned by the plant manager if the 
refining plant wants to produce the RBDPO quality with China specification. The findings show that the 
integration of time-series expansion method can improve the accuracy and reliability of the prediction 
performance. 
 

 

Figure 4: Monitoring chart of actual and predicted free fatty acid quality of (a)NIPALS-PCR using 100 % PC 
variation, (b)NIPALS-PCR using 95 % PC variation 
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The predicted value using 95 % variations shows a predictable trend where the predicted output from three 
prediction models are not exceeding the PORAM, Vietnam and China specifications. The NIPALS-PCR RW and 
NIPALS-PCR EWRW models show a better prediction trend which is close to the actual output value than the 
NIPALS-PCR static model. This excellent performance shown by the NIPALS-PCR using 95 % variation is 
important to help the refining plant in predicting the incoming product quality with no false alarm. By referring to 
this prediction performance, there is no critical action required during the production since the RBDPO quality 
is successfully predicted within all quality specification. The findings show that the prediction models can be 
improved through dimension reduction by retaining optimum percentage of variance. The monitoring chart acts 
as guidelines to the plant operators at the beginning of the refinery process. Action plans such as identifying the 
time where off-specification input is expected to come into the process and actions for adjustment on the off-
specification products should be prepared, specifically during the production of high-quality specification end 
product such as China specification.  

4. Conclusions 
The prediction using static model shows random prediction trend, and is incapable to predict the actual quality 
specification, which can bring in false alarm to the process. Through the integration of MSPC prediction model 
with time-series expansion method, the process variation is reduced and the predicted output follows the trends 
of the actual output quality. The prediction performance is improved by 95 % which depicts that the adaptive 
prediction model is more capable to predict the actual quality specification of the RBDPO quality. The 
improvement of quality prediction can bring many benefits to the palm oil refinery plants in the form of monetary 
and energy savings through the prevention of the product recycle. This allows the refining plant to operate at 
optimum level and minimizing the process downtime. As data sample increases, the proposed models lead to 
a slower speed of model adaptation. This limitation can be overcome through the hybrid of two time-series 
expansion method such as recursive window analysis with moving window analysis. 
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