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Cities play a significant role on the fate of materials in economy-wide flows. Their sustainability is integral to the 
future of resource utilization. Circular city economies are recommended for the future of sustainable cities. 
Shifting towards a circular economy is challenging as urban metabolism is intertwined with city characteristics. 
The effectiveness of action plans is vital towards the shift through insight derivation of past city-level data. Rough 
set-based model can draw insights from city-level data in interpretable form, facilitating communication between 
analysts and city planners. This approach generates if-then rules based on the city-level data. This work 
generated 14 if-then rules from data of 100 cities using rough set theory. The model identified 5 relevant city 
characteristics from the 13 characteristics available from the data. The relevant characteristics are demographic, 
education, ease of doing business, income inequality, and tourism. The metric on waste management for cities 
was selected as the decision attribute of the model as it is the most relevant to circularity. The model attained a 
classification accuracy of 94 %. Specific if-then rules achieved coverage as high as 64 %, allowing ease of 
analysis. The rules suggest the level of development as the delineation between waste management system 
performances. The findings highlight the relevance of future studies on circular economy of developing 
countries. Results of this work provide insights on critical features that occur in more sustainable cities, which 
can be used to plan future circular city economies. 

1. Introduction 
Cities encompass more than half of the global population (United Nations, 2018) and constitute 80 % of the 
global GDP (World Bank, 2020). The population level and economic performance prompts high material 
utilization. Material consumption of cities accounts for more than half of the global sum (IRP, 2018), highlighting 
the influence of cities to future sustainability goals. Sustainable cities are integral towards resource decoupling. 
Adoption of circular economy (CE) among cities is recommended for their future sustainability (IRP,2018). CE’s 
philosophy is applicable among cities and other scales of economic systems such as companies and industrial 
parks (Kirchherr et al., 2017). Circular systems are argued to exhibit carbon footprint and material footprint 
reductions (Geng et al., 2019). 
Cities are complex economic systems, exhibiting multifaceted characteristics. Such as in the work of Nakamura 
(2019), analysis of land price included analysis on entrepreneurial, environment, and social factors. The 
complexities resulted to the concept of urban metabolism where technical, social, and economic factors affect 
material flows among cities (Wolman, 1965). Understanding the interplay of factors and urban metabolism is 
significant for city planning towards sustainability (Kennedy et al., 2011). Critical assessment on the 
prerequisites of sustainable cities is integral to action plan development. Elliot et al. (2019) recommends 
analysing the cause-and-effect of urban metabolism for sound decision making. Remøy et al. (2019) added that 
evaluating the cause-and-effect is integral for the transition towards CE. 
Complexities of urban metabolism yields difficulties in its evaluation and estimation. Machine learning (ML) 
provides a resolution to the challenges of estimation. Its prominence has been recognized for sustainable 
development applications (Gue et al., 2020). Nosratabadi et al. (2020) noted that there is an exponential growth 
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in publication on the applications of ML on city development. Feng and Xu (1999) applied a hybrid Artificial 
Neural Network (ANN) for decision making in city planning. Reades et al. (2019) used ML to identify 
gentrification. Khoshnava et al. (2020) applied ANN in estimating the relationship between green infrastructures 
and the economy. 
The prevailing limitation of ML in urban planning is its ‘black box’ approach (Wagner and de Vries, 2019). The 
‘black box’ limitation impedes acceptance of the models among stakeholders. Rudin (2019) recommends 
interpretable models as the solution to the ‘black box’ limitation. Interpretability is critical for high-stakes decision 
making (Carvalho et al., 2019). Doshi-Velez and Kim (2017) argued the need of interpretability for cases of 
significant consequences and cases of difficult real-world validation. City planning is a high-stakes decision 
making as it affects a significant portion of the population. City planning is difficult to validate because of the 
scale and multifaceted nature of cities. Interpretable models are essential in city planning. Gue et al. (2021) 
used an interpretable model in the depiction of causal network maps for urban circular economies. 
Rule induction techniques are interpretable ML models that generate if-then rules in modelling datasets 
(Grzymala-Busse, 2009). The rules are easily interpretable as causal relationships enable effective human 
understanding (Holzinger et al., 2019). Decision Trees (DT) is a prominent rule induction technique, yielding a 
tree-like structure in the prediction model. Saldivar-Sali (2010) used Decision Trees (DT) in classifying cities 
according to climate, GDP, and population. The tree-like structure of DT predicts through a cascade of if-then 
rules. The cascaded approach becomes difficult to comprehend as additional branches are included.  
Rough Set Theory (RST) is an alternative rule induction technique that are easier to comprehend, using simple 
if-then rules. RST generates rules according to imprecise boundaries (Pawlak, 1982). The technique has the 
advantage of capturing rules for entirety of the data. Stakeholders may omit rules that does not meet a specified 
accuracy or coverage. RST is a recognized technique for decision support systems. Aviso et al. (2008) applied 
the technique as a in improving the industry’s environmental performance. Literature has also applied RST in 
the evaluation of cities and countries. Szul et al. (2017) estimated household waste generation among rural 
areas. Their model generated 40 decision rules. He et al. (2018) evaluated the clean energy development 
among countries. Lopez et al. (2021) identified socio-economic traits affecting carbon footprint of countries.  
As CE is a conglomeration of existing ideologies, recognizing historical patterns derives insights for city 
planning. City planning for CE requires holistic analysis of the cities’ complexities. The complexities entail the 
use of ML models to derive patterns from historical data to guide future action plans. The level of interpretability 
is important for decision making. RST is a rule induction technique that is interpretable with simple if-then rules. 
Literature has yet formulated an RST of if-then rules on the circular performance of cities. This work generates 
a rough set-based model on city characteristics affecting their circular performance. Metric on waste 
management is selected as the indicator of circular performance. The significance of this work is the visualization 
of if-then rules on the critical historical patterns of sustainable cities. Insights drawn from the findings can support 
the development of key action plans for circular city economies The generated rules also enable ease of 
comprehension when relaying historical patterns to key decision makers. 
This section provided an overview of the problem and the study’s objective. Section 2 details the methodology 
which includes a brief discussion of RST and a description of the city-level data. Section 3 shows and discusses 
the findings. Section 4 provides the conclusion of this work. 

2. Methodology 
Rules for modelling city characteristics were formulated using RST. This work utilized characteristics of 100 
cities. The dataset was divided into a 70:30 ratio for training and testing. The dataset was trained and validated 
through the ROSETTA software developed by Øhrn (1999). 
RST is a pattern recognition technique utilizing attribute discernibility for rule formation (Pawlak, 1982). Hvidsten 
(2013) provides a step-by-step discussion on the technique’s computational procedure. Continuous variables of 
the dataset are initially discretized, resulting to a binary classification for this work. The discernibility between 
conditional attributes and the decision attribute is assessed. Reducts are then formed from the discernibility. 
Reducts are sets of conditional attributes that are sufficient to describe the decision attribute. RST then 
generates if-then rules from a selected reduct. 
Data on city characteristics are obtained from the Sustainable Cities Index (SCI) of Arcadis (2016), representing 
100 cities. As of writing, the numerical data of the SCI dataset became inaccessible. The case study therefore 
presents a demonstrative procedure of rough set-based modelling. The SCI dataset comprise of three main city 
characteristics which are people, profit, and planet. The three characteristics has its own sub-indicators, tallying 
to 20 sub-indicators. This study utilized the 13 sub-indicators of people and profit as the conditional attribute. 
This study considered the 7 sub-indicators of planet as candidates for the decision attribute. The sub-indicator 
‘waste management’ significantly represents the critical component of CE (Kůdela et al., 2020). ‘Waste 
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management’ was then chosen as the decision attribute. The other sub-indicators under the planet characteristic 
were not selected as their relevance to CE is minimal. 
Scoring by SCI is through normalization of quantifiable characteristics. The normalization process is based on 
the highest and lowest score of the 100 cities. The scores were benchmarked relative to the top and lowest 
performance levels. Sub-indicators closer to 1 indicate that the performance level is closer to the top benchmark 
while the opposite is true for 0. The relative basis is used to discretize the numerical representations to binary 
classifications. Scores between 0.5 to 1 are classified as ‘1’. This category indicates that the city’s attribute is 
closer to the top benchmark than the lowest. Scores between 0 to 0.5 are classified as ‘2’. This category 
indicates the city’s attribute is closer to the lowest than the top benchmark. The discretization therefore follows 
benchmarking as a performance indicator. Insights drawn are bounded on how well the cities perform relative 
to the concurrent extremes. After discretization, RST identified the dataset’s reducts. The ROSETTA software 
searches reducts through a Genetic Algorithm (GA) approach. The software allows a threshold to be set where 
reducts supporting a threshold percentage of the dataset are also determined. The preferred reduct was then 
used for rule generation. 

3. Results and Discussion 
The GA component identified multiple reducts. The reducts are sets of conditional attributes that are adequate 
to describe the decision attribute. The reduct with the least number of attributes was selected for ease of 
analysis. Table 1 details the description of each attribute and the instances of their classifications. 

Table 1: Selected attributes with their description and instances 

Notation Metric Description Instances 
DE Demographics Described by the dependency ratio. Classification of ‘1’ indicates 

larger population ratio capable to join the labour force. 
‘1’ – 40 

  ‘2’ – 60 
ED Education Described by the level of education. Classification of ‘1’ indicates 

better educational system. 
‘1’ – 59 

  ‘2’ – 41 
II Income Inequality Described by the Gini coefficient. Classification of ‘1’ indicates 

equally distributed income. 
‘1’ – 58 

  ‘2’ – 42 
EB Ease of Doing 

Business 
Described by the Ease of Doing Business Index. Classification of 
‘1’ indicates better business environment. 

‘1’ – 68 
 ‘2’ – 32 

TO Tourism Described by the number of tourists per year. Classification of ‘1’ 
indicates higher tourist rate. 

‘1’ – 23 
  ‘2’ – 77 

WM Waste Management Described by the amount of landfill, recycling, and wastewater 
treated. Classification of ‘1’ indicates better waste management 

‘1’ – 59 
  ‘2’ – 41 

 
Figure 1 depicts the confusion matrix. The model did not capture all the objects in the dataset as the conditional 
attributes of one object cannot be looked up. This limitation resulted to a no classification instance, denoted as 
‘*’. Overall, the rules have correctly classified 94 % of the dataset, indicating satisfactory classification 
performance. 
 

 

Figure 1: Confusion matrix of the generated rules from the SCI dataset 

1 2 * Recall FN Rate

1 56 2 1 94.92% 5.08%

2 3 38 0 92.68% 7.32%

*No classification

94.92% 95.00%

5.08% 5.00%

Overall Accuracy

94.00%

Ac
tu

al

Predicted

Precision

FP Rate
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The reduct generated 22 rules which were then conglomerated into 14 if-then rules. Table 2 enumerates the 14 
if-then rules. The attributes DE, ED, II, EB, and TO are the conditional attributes and represent the LHS of the 
if-then rules. The attribute WM is the decision attribute and represent the RHS of the if-then rules. For example, 
Rule 2 states if DE is ‘DNC’, ED is ‘2’, II is ‘2’, EB is ‘2’, TO is ’2’, then WM is ‘1’ or ‘2’.  
TO has the highest instance of ‘DNC’ among the five attributes. The instances are caused by the attribute’s 
skewed distribution, as indicated in Table 1. Rules 2, 7, and 11 have two decision classes for WM. Their 
prediction of the decision attribute is either ‘1’ or ‘2’. Selection of which decision attribute is dependent on 
preference. This work selected the decision attribute with the higher RHS accuracy. For example, the RHS 
accuracy of Rule 2 for ‘2’ is 83 %. Objects of the corresponding conditional attributes are predicted to have a 
WM of ‘2’. 
The LHS support indicates the objects captured by the rule while the LHS coverage is its percent share. Rule 1 
has the highest LHS support constituting 38 of the 100 objects. The RHS support indicates the number of objects 
with the corresponding decision class. The RHS coverage is the percent share with reference to the decision 
class’ total instance. Rule 1 has the highest RHS coverage of ‘1’, constituting 64 % of the decision class. Rule 
2, on the other hand, has the highest RHS coverage of ‘2’, encompassing 24 %. 

Table 2: Generated rules from the SCI 2016 dataset 

Rule DE ED II EB TO WM LHS 
Support 

RHS 
Support 

RHS 
Accuracy 

LHS 
Coverage 

RHS 
Coverage 

1 2 1 DNC 1 DNC 1 38 38 1.00 0.38 0.64 
2 DNC 2 2 2 2 1, 2 12 2, 10 0.17, 0.83 0.12 0.03, 0.24 
3 1 1 2 1 DNC 1 9 9 1.00 0.09 0.15 
4 2 2 1 2 2 2 8 8 1.00 0.08 0.20 
5 1 2 1 DNC DNC 2 6 6 1.00 0.06 0.15 
6 1 1 1 1 2 1 6 6 1.00 0.06 0.10 
7 2 2 1 1 DNC 1, 2 5 3, 2 0.60, 0.40 0.05 0.05, 0.05 
8 1 2 2 2 1 2 4 4 1.00 0.04 0.10 
9 1 1 2 2 2 2 3 3 1.00 0.03 0.07 

10 1 2 2 1 DNC 2 3 3 1.00 0.03 0.07 
11 1 1 1 1 1 1, 2 2 1, 1 0.50, 0.50 0.02 0.02, 0.02 
12 2 2 2 1 2 2 2 2 1.00 0.02 0.05 
13 2 1 2 2 2 2 1 1 1.00 0.01 0.02 
14 2 2 2 2 1 2 1 1 1.00 0.01 0.02 

*’DNC’ indicates attribute’s value is irrelevant 
 
Classification of ‘1’ are countries with relatively better waste management systems. Rule 1 describes 64 % of 
such instances. The conditional attribute for the rule is attaining a ‘1’ classification for ED and EB, reflecting 
good environment for education and business operations. This is coherent with the findings of Smejkalová et al. 
(2020) where education and economy are significant to waste management. Complimentary to the two attributes 
is the ‘2’ classification of DE, indicating low score for demographics. The low score of DE is reflective of cities 
from developed countries as they exhibit lower dependency ratio (Engelgau et al., 2011). Rules 3 and 6 also 
describe WM of ‘1’. The two rules are also indicative of ‘1’ classification for ED and EB. The aggregated RHS 
coverage of Rules 1, 3, and 6 is 90 %. Classification of the three rules’ conditional attribute are reflective of cities 
from developed countries. 
Classification of ‘2’ are countries with relatively poor waste management system. Rules 2, 4, and 5 describe 59 
% of such instances. The three rules have the conditional attribute ED set as ‘2’, indicating the education system 
on the lower half. The attributes’ ‘2’ classification is also reflected on the discussion of Diaz (2017) where 
absence of education impedes participation of proper waste management. EB is also set to ‘2’ except for Rule 
5. The score of both attributes reflects characteristics of cities from developing countries. 
Table 3 shows a sample illustration of the RST’s prediction. The table demonstrates the classification of the six 
cities according to the 14 if-then rules. The findings indicate that the difference of waste management system is 
delineated by the difference between developed and developing countries. The finding is coherent with the 
review of Halog and Anieke (2021) as developing countries have notable mismanagement of waste. Waste 
management is a component of CE. The decision attribute can be a depiction on the future success rate of 
circular city economies. The rules generated by RST suggest an impending challenge of CE among cities of 
developing countries. As highlighted in the review of Halog and Anieke (2021), CE is a perspective scarcely 
prioritized among developing countries. 
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Table 3: Sample demonstration of the RST model 

City Activated 
Rule 

Conditional Attribute Decision Attribute 
DE ED II EB TO WM 

Amsterdam 1 2 1 1 1 1 1 
Antwerp 1 2 1 1 1 2 1 

Baltimore 3 1 1 2 1 2 1 
Manila 2 2 2 2 2 2 2 

Sau Paulo 2 1 2 2 2 2 2 
Kolkata 4 2 2 1 2 2 2 

4. Conclusions 
This work generated if-then rules of city data characterizing proper waste management using machine learning 
approach. The rules attained a classification accuracy of 94 %. Rule 1 covers 64 % of better performing cities 
while Rules 2, 4, and 5 captures 59 % of poor performing cities. Findings of this work highlight the relevance of 
studies on CE for cities from developing countries. The rules show that the delineation between waste 
management system performance is the difference between level of development. The rules for poorer waste 
management indicate poor education and business environment. Transition towards circular city economies will 
need to consider challenges of poor education and business environment. 
The dataset encompassed all cities regardless of regional differences. Regional differences, such as continents, 
portray distinction in urban metabolism. Future works may consider certain regional distinctions for generation 
of distinct rules. City types, such as population dense cities, may exhibit unique rules as well. Future work may 
consider standard city types as distinction for rule generation. The classification of this work was based on 
benchmarking relative to concurrent performance levels. The ranges were not based on a standard 
classification. Future works may consider investigating appropriate classification ranges. The case study 
demonstrated a rough set-based modelling for circular city economies. Future works may consider other city-
level datasets, following the demonstrated procedure. 
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