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Scheduling is a major issue in process operations, and it is essential for maximizing production output. Short-
term scheduling is used in batch operations to allocate a set of restricted resources across time to manufacture
one or more items according to a batch recipe. For such processes, a feasible design space can be described
by the decision-maker as per the process constraints and objectives. A machine learning approach using
support vector machines is implemented for the classification of the feasible region from a data set. An algebraic
equation is obtained using support vectors (data points participating in creating classification boundary), which
could be incorporated into the mathematical model. The equation will lead to attaining several objectives in the
finite obtained region. In this paper, kernel-based support vector classification is tailored to a continuous-time
formulation for the short-term scheduling of batch processes. First, using a classification SVC over a data set,
it was observed that the mathematical model is infeasible for a set of production combination of two different
products. Using the proposed methodology, a design space is presented graphically for feasible production
targets. In the second case, the study is applied to perform optimization operations to target feasible region
within a specified limit as a choice of decision-maker.

1. Introduction

Batch processing is widespread in the process industry, especially when specialized manufacturing is required.
(e.g. pharmaceuticals, food, bio-chemicals and fine chemicals etc.). Objectives like minimising costs, making a
profit or maximising profit can be achieved by optimum scheduling for a given time horizon. The mixed-integer
linear programming (MILP) model for short-term production scheduling was proposed by Ierapetritou and
Floudas (1998). The aim was to assess the optimum production schedule using the resources available over a
given time horizon while meeting the production requirements at the end of the span. For short-term production
scheduling, substantial progress has been made in the domain of short-term batch process scheduling, including
the solution of industrial-sized problems. Mendez et al. (2006) presented a study of optimization strategies for
batch process short-term scheduling. Kumawat and Chaturvedi (2021) proposed a formulation to handle
uncertainties in the batch process for resource targeting.
In the past few years, data-driven techniques were implemented to the problems related to process systems
engineering (PSE), focused on coupling data-based methodologies and classical optimization methods. These
data-driven approaches are widely used for targeting uncertainties using stochastic and robust optimization
methodologies (Gabrel et. al, 2014). These techniques are also extended to define a design space and to
analyse the feasibility of the process systems. Boukouvala et al. (2010) defined a design space of
pharmaceutical processes using data-driven-based methods.  Lisa and Ierapetritou (2019) presented a
feasibility analysis for the integration of planning and scheduling problems.
Recently, Lee et. al (2018), discussed the recent progress in Machine Learning (ML) and predictive analytics by
transforming that data into useful predictions and implications for the PSE. Grossmann and Harjunkoski (2019)
discussed the future perspectives of ML applications. They also stated that ML and optimization are closely
related to each other and would be valuable to PSE.
In this paper, the feasibility analysis of batch process network is discussed using support vector machines (SVM)
classification, an ML technique. This work's ideology is based on projecting the STN feasible area onto the
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space of production objectives. A set of algebraic equations for the classification of the data is developed and
incorporated into the scheduling problem. Initially, the feasibility of the mathematical model of STN is obtained
for different production demand. Further, it is extended to profitability analysis, targeting a feasible region for
apposite profit and performing optimization in the generated region. Linear relationships will be used to
approximate raw material and end product costs, while methodologies for determining the viability of production
objectives will be thoroughly studied.

2. Problem Statement

Given the production recipe for each product, available units with their capacities, a time horizon of interest and
job durations, for a batch process. A MILP formulation is modelled in order to obtain an optimal schedule w.r.t
the objective.
The aim of this paper is to obtain a data-driven feasible region for different production targets using ML
classification. The decision-maker can describe a feasible design space relying on the process constraints,
production objectives etc.  The proposed methodology is extended to perform optimization in the favourable
design space.

3. Methodology

The methodology presented to solve the defined problem is elucidated in three sections. In section 3.1, the
mathematical model for STN scheduling is presented. Section 3.2 explains the basic mathematics linked with
the SVM algorithm, which required a classify the data. Section 3.3 presents the implementation of SVM to the
batch process.

3.1 Batch Scheduling 

The mathematical model for targeting maximum profit to be generated by processing raw materials to finished
products if formulated.

∑ 𝑦(𝑠𝑖𝑛, 𝑗, 𝑛) ≤ 1      ∀𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁

𝑠𝑖𝑛∈𝑆
(1)

𝑊𝑚𝑖𝑛𝑦(𝑠𝑖𝑛 , 𝑗 , 𝑛) ≤ ∑ 𝑚(𝑠𝑖𝑛, 𝑗 , 𝑛) ≤ 𝑊𝑚𝑎𝑥𝑦(𝑠𝑖𝑛, 𝑗 , 𝑛)    ∀𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁

𝑠𝑖𝑛∈𝑆
(2)

∑ 𝑚(𝑠𝑖𝑛, 𝑗, 𝑛 − 1) = 

𝑠𝑖𝑛

∑ 𝑚(𝑠𝑜𝑢𝑡 , 𝑗, 𝑛 − 1)

𝑠𝑜𝑢𝑡

(3)

𝑞(𝑠, 𝑗, 𝑛) = 𝑞(𝑠, 𝑗, 𝑛 − 1) +   ∑ 𝑚(𝑠𝑖𝑛, 𝑗, 𝑛) −

𝑠𝑖𝑛

∑ 𝑚(𝑠𝑜𝑢𝑡, 𝑗, 𝑛)  

𝑠𝑜𝑢𝑡

∀𝑠𝑖𝑛 ∈ 𝑆𝑖𝑛, 𝑠𝑜𝑢𝑡 ∈ 𝑆𝑜𝑢𝑡, 𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁 (4)

𝑇𝑝(𝑠𝑜𝑢𝑡, 𝑗, 𝑛) = 𝑇𝑝(𝑠𝑜𝑢𝑡, 𝑗, 𝑛) +  𝛼(𝑠𝑖𝑛, 𝑗)𝑦(𝑠𝑖𝑛, 𝑗, 𝑛) + 𝛽(𝑠𝑖𝑛, 𝑗)𝑚(𝑠𝑖𝑛, 𝑗, 𝑛 − 1) 

  ∀𝑠𝑖𝑛 ∈ 𝑆𝑖𝑛, 𝑠𝑜𝑢𝑡 ∈ 𝑆𝑜𝑢𝑡, 𝑗 ∈  𝐽, 𝑛 ∈ 𝑁 
(5)

𝑇𝑝(𝑠𝑖𝑛, 𝑗, 𝑛) ≥ 𝑇𝑝(𝑠𝑜𝑢𝑡
′ , 𝑗, 𝑛)    ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁 (6)

𝑇𝑝(𝑠, 𝑗, 𝑛) ≤ 𝐻    ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁 (7)

𝑞(𝑠, 𝑗, 𝑛) ≤ 𝑄𝑢(𝑠, 𝑗)     ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁 (8)

Objective:

𝑚𝑎𝑥 ∑ ∑ ∑ ∑ 𝐶𝑃(𝑝)𝑚(𝑠𝑝, 𝑗, 𝑛) −

𝑛𝜖𝑁𝑗𝜖𝐽𝑠𝜖𝑆𝑝

∑ ∑ ∑ ∑ 𝐶𝑅(𝑟)𝑚(𝑠𝑟 , 𝑗, 𝑛)

𝑛𝜖𝑁𝑗𝜖𝐽𝑠𝜖𝑆 𝑟

(9)

To maximize the overall profit is objective in the above formulation. Here, the allocation restrictions are given by
Eq(1), which states that at any event point ‘n’, only one of the tasks can be completed in each unit. The capacity
limitations of production units and storage and are expressed by the constraints given in Eq(2). Eq(3) states the
material balance around a particular unit ‘j’. Eq(4) implies a general mass balance for the amount of state ‘s’ stored 

at a time point ‘n’. Similarly, the constraint is given in Eq(5) are express the duration constraint. Similarly, Eq(6)
denotes a sequence constraint: a state ‘s' can only be utilized in a single unit, and only after all preceding states
have been processed (if ‘śout’ is a previous state of ‘sin’). Eq(7) constraints the time horizon of interest that the
appearance of all states should be within it. Eq(8) describes the limit of the maximum allowed amount of state ‘s’ in 

unit ‘j’. Eq(9) is the objective of the MILP model, the first term denotes the profit generated from the finished products
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A and B. Second terms represent the total cost of the three raw materials. Here CPp and CRr are the cost/ton of the
finished products and raw materials respectively.

3.2 Classification using Support Vector Machines 

SVM is a machine learning model that can perform linear and nonlinear classification, regression, and outlier
identification in high-dimensional space, SVM constructs a hyperplane or sequence of hyperplanes with the
maximum distance from each class's nearest training data points. This results in a strong separation and the
larger the margin, the smaller the classifier's generalization error.
Given a set of training vectors xi ∈ ℝP, i = 1,2….k in two classes, and an output vector O ∈ {-1,1}k, the goal is to
find w ∈ ℝ  and b ∈ ℝ as a result of which the prediction made by sign(wTɸ(x)+b) is correct for the vast majority
of samples.  Support Vector Classification (SVC) solves the following primal problem (9-11):

min
𝑤,𝑏,Ԑ

1

2
𝑤𝑇𝑤 + 𝐶 ∑ Ԑ𝑖    ;  𝑠. 𝑡.  

𝑘

𝑖=1

 (10)

𝑂𝑖(𝑤𝑇ɸ(𝑥) + 𝑏) ≥ 1 − Ԑ𝑖 (11)
Ԑ𝑖 ≥ 0, ∀𝑖 (12)

Intuitively, the goal is to maximize the margin (by minimizing ||w ||2=wTw). Also, when a sample is misclassified
or falls within the margin border, a penalty is incurred. Ideally, the equation 𝑂𝑖 (wTɸ(x)+b) ≥1 would be true for
all data, which indicates a perfect prediction. Because the issues aren't always fully separable with a hyperplane,
some samples are permitted to be separated from their proper margin boundary ‘Ԑ𝑖 ’. the penalty term C works 
as an inverse regularization parameter, controlling the strength of the penalty. The dual of the primal problem
(12-14) is:

min
𝛿

1

2
𝛿𝑇𝑄𝛿 − 𝑒𝑇𝛿;  𝑠. 𝑡. (13)

𝑂𝑇𝛿 = 0 (14)
0 ≤ 𝛿𝑖 ≤ 𝐶, ∀𝑖 (15)

where ‘e’  is an all-ones vector, and ‘Q’  is a (k×k)  positive semidefinite matrix 𝑄𝑢𝑣 = 𝑧𝑢𝑧𝑣𝐾(𝑥𝑢 , 𝑥𝑣), where 
𝐾(𝑥𝑢, 𝑥𝑣) = ɸ(𝑥𝑢)𝑇ɸ(𝑥𝑣)  is the kernel. The terms 𝛿𝑖  are called the dual coefficients, and they are upper-
bounded by ‘C’. This dual representation highlights that the training vectors are implicitly transferred into a
higher dimensional space by the function is highlighted by this dual representation ′ɸ′. Commonly used kernel
functions are the polynomial kernel, radial basis function (RBF) kernel with bandwidth and sigmoid kernel.
(Amrani et. al, 1999)
The output of the decision function for a given sample ‘x' becomes as follows Eq(16) and the predicted class
correspond to its sign.

∑ 𝑧𝑢

𝑢∈𝑆𝑉

𝛿𝑢𝐾(𝑥𝑢 , 𝑥) + 𝑏 (16)

It should be noted that the sum of the support vectors will consist of the samples that lie within the margin
because the dual coefficients are zero for the other samples.

3.3 Implementation of SVC in the batch process 

To obtain the algebraic equation of classification to describe the feasibility of production targets, it is assumed
that data in the form of historical information of the scheduling problem is available. In this case, the scheduling
model (1-8) is used to generate data of different production targets and their corresponding feasibility
information. The steps of the methodology are presented as a flow chart in Figure 1 and explained below:
Step 1:  The data set with different production targets {PA, PB} as input and classifying each instance as feasible
[− 1] or infeasible [1]. 

Step 2: The collected data is now divided into two different sets, one to train the data using SVM classifier, and
the second as a test set to check the fitting of the model.
Step 3: Train the data to create an ML model with the appropriate kernel function and parameters.
Step 4:  Model fitting can be judged based on the classification report of the test data. Better the classification
report better the fitting of the trained data. For the improper fitting of input parameters, step 3 should be
implemented again with modified parameters.
Step 5:  A graph for the feasible region generated from the trained data can be obtained. It will assist the
decision-maker to choose feasible production targets.
Step 6: Using the model coefficients i.e. dual coefficients, support vectors and intercept, an algebraic equation
for the classifier can be obtained.
Step 7: The algebraic equation can now be used and incorporated into the mathematical model.
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The resultant model with Eq(16) as an additional constraint will now only be viable for the feasible region of the
production space. Various objectives and optimization problems can be achieved and will be feasible for the
defined area by SVC

Figure 1. Flow chart for the proposed methodology 

4. Illustrative Example

To demonstrate the methodology, an example is adapted from Ierapetritou and Floudas (1998), it involves the
production of two products using three raw materials (Figure 2a) with six event points. The maximum production
that can be achieved is calculated to be 139.75 kg comprised of 87.75 kg of product A and 52 kg of product B
in 8 hours; as the time horizon of interest (H). In this paper, the data set for 120 inputs are generated using a
MILP model (1) - (9) for model feasibility. The mixed-integer linear programming (MILP) model is solved in
GAMS 28.4.2 using CPLEX solver. The feasibility analysis is performed and analysed for two different cases.

Figure 2. (a)State Task Network (STN) representation of the batch process (b) simulated data points 

Case 1: Feasible region for STN
A set of historical/simulated data is required as different production targets for feasibility analysis. Figure (2b)
shows the data of various product target (A and B) and their classification in the form of feasibility; red marks
for the infeasible and blue for the feasible points. The input data set is trained using SVC algorithm to classify

Classify the training data in different classes as per the choice of decision maker

Train the data using SVC

Collect historical/simulated data and divide as training and test set

Obtain the algebraic equation based on kernel

Incorporate the obtained equation into the mathematical model

Start

End

Modify tuning parametersExamine test
data prediction

Satisfied
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data on the production space by a hyperplane. It can be observed that the data set can be linearly separable,
here, a linear kernel is used for the training model. The classification model is trained in Python 3.0 using the
library scikit-learn (Pedregosa, 2011) with default parameters.
A decision boundary is generated based on the input data for the classification of the dataset (Figure 3a). The
equation of the hyperplane can be obtained from the support vectors and incorporated into the mathematical
model with the objective as the choice of decision-maker. The nature of the resultant model will be MILP with
respect to the linear objective. The model has 98 % accuracy for the test set and considered to be reliable for
the classification.

Figure 1. Decision Boundary (a) feasible operations (b) minimum profit 

Case 2: Targeting minimum profitability
Profit is a major concern for planners and sometimes it is important to target minimum profit to be generated for
operating a process. This can be attained using a mathematical expression for profit capping. However, the
optimization problem eventually results in a single product combination as a target for the minimization problem.
The classification problem will additionally result in a feasible area for the feasible production target considering
minimum profit.
RBF kernel is used for the SVC model to classify the nonlinear dataset. The blue region in Figure 3(b) represents
the approximate feasible area of production, in order to generate a minimum profit of $ 200. The algebraic
equation can be generated using the sum of the support vectors of the samples that lie within the margin. With
an objective to minimize resource requirement cost (Eq(17)), optimization is performed within the feasible
region. Eq(18) classifies the feasible region and should be incorporated in the optimization model. Eq(19) limits
the minimum and maximum production (𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥) to be produced in the fixed time horizon (H). The resultant 
MINLP model with constraints (1)-(8), Eqs(17)-(19) and objective (Eq(17)) will only be viable for feasible options
as per the choice of the planner for the targeted minimum profit.

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝐶𝑅(𝑟)𝑚(𝑠𝑟 , 𝑗, 𝑛)

𝑛𝜖𝑁𝑗𝜖𝐽𝑠𝜖𝑆 𝑟
(17)

∑ 𝑧𝑢

𝑢∈𝑆𝑉

𝛿𝑖exp (−𝛾‖𝑥𝑢 − 𝑃‖) + 𝑏 ≤ 0 (18)

𝑃𝑚𝑖𝑛 ≤ 𝑃 ≤ 𝑃𝑚𝑎𝑥 (19)

The resultant MINLP model is solved using GAMS/CONOPT solver. The model generates a minimum resource
cost of $ 710.67 within the feasible region (assuring minimum targeted profit).

5. Conclusions

In this paper, a data-driven approach is proposed to provide a feasible region of production targets. It comprises
a classification method, SVC, to describe the feasible area projected from data-driven classifiers on the product
space. The classifiers are then transformed into the planning problem and can also be modified as the choice
of the decision-maker. The resultant problem with the integrated classifier would only result in feasible solutions
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on the basis of training data. As per the kernel function used for the classification, the nature of the final model
may be MILP or NLP. The model is solved for the batch process to produce two products from three raw
materials for a fixed time horizon of interest. Classification is performed on simulated data set to obtain a feasible
production space. From the case study design space is created to obtain a minimum profit from the batch
operation. In future work, the formulation could be extended with demand-based production planning and multi-
facility planning problems to satisfy the demand.  

Nomenclature 

Sets Batch Process Parameters
𝑱 = { 𝒋| 𝒋 = 𝒖𝒏𝒊𝒕} 𝜶 Constant coefficient of processing time
𝑵 = { 𝒏| 𝒏 = 𝒆𝒗𝒆𝒏𝒕 𝒑𝒐𝒊𝒏𝒕} 𝜷 Variable coefficient of processing time
𝑺 = { 𝒔| 𝒔 = 𝒂𝒏𝒚 𝒔𝒕𝒂𝒕𝒆} 𝑮 Fixed production demand
𝑹 = {𝒓| 𝒓 = 𝒓𝒂𝒘 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍} 𝑯 Time horizon of interest
𝑷 = {𝒑| 𝒑 = 𝒑𝒓𝒐𝒅𝒖𝒄𝒕} 𝑪𝑹(𝒓) Cost of raw material r 
𝑺𝒊𝒏 = { 𝒔𝒊𝒏| 𝒔𝒊𝒏 = 𝒊𝒏𝒑𝒖𝒕 𝒔𝒕𝒂𝒕𝒆} 𝝐 𝑺 𝑪𝑷(𝑷) Cost of product 𝑷, where 𝑷 𝝐 𝑷𝑨, 𝑷𝑩

𝑺𝒐𝒖𝒕 = { 𝒔𝒐𝒖𝒕| 𝒔𝒐𝒖𝒕 = 𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒕𝒂𝒕𝒆} 𝝐 𝑺

Continuous Variables (Batch Process)
𝒎(𝒔, 𝒋, 𝒏) Amount of state ‘s’ exits or enter to/from unit ‘j’ at a time point ‘n’. 
𝑻𝑷(𝒔, 𝒋, 𝒏) Time at which state ‘s’ appears in unit ‘j’ at event point ‘n’. 

𝑸𝒖(𝒔, 𝒋) Maximum allowed amount of state ‘s’ in unit ‘j.’ 
𝒒(𝒔, 𝒋, 𝒏) Amount of state ‘s’ in unit ‘j’ at time point ‘n’ 

Binary Variable (Batch Process)
𝒚(𝒔, 𝒋, 𝒏) Usage of state ‘s’ in unit ‘j’ at time point ‘n’

SVM Notations 

i Training vector indices 𝒛 Lagrangian multiplier
u Set of support vectors ∈ i Ԑ𝒊 Slack Variable
𝒘 Weight 𝑪 Penalty
𝒃 Bias 𝜹𝒊 Dual coefficients
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