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Cities are expected to play a major role in managing climate change in the coming decades. The actual 
environmental performance of urban centres is difficult to predict due to the complex interplay of technologies 
and infrastructure with social, economic, and political factors. Machine learning (ML) techniques can be used to 
detect patterns in high-level city data to determine factors that influence favourable climate performance. In this 
work, rough set-based ML (RSML) is used to identify such patterns in the Sustainable Cities Index (SCI), which 
ranks 100 of the world’s major urban centres based on three broad criteria that cover social, environmental, and 
economic dimensions. These main criteria are further broken down into 18 detailed criteria that are used to 
calculate the aggregate SCI scores of the listed cities. Two of the environmental criteria measure energy 
intensity and greenhouse gas (GHG) emissions. RSML is used to generate interpretable rule-based (if/then) 
models that predict energy utilisation and GHG emissions performance of cities based on the other criteria in 
the database. Attribute reduction techniques are used to identify a set of 7 non-redundant criteria for energy use 
and 9 non-redundant criteria for GHG emissions; 6 criteria are common to these two sets. Then, RSML is used 
to generate rule-based models. A 10-rule model is determined for energy intensity, while an 11-rule model is 
found for GHG emissions. Both models were reduced further by eliminating rules with weak generalisation 
capability. A key insight from the rule-based models is that social, environmental, and economic attributes are 
associated with energy intensity and GHG emissions due to indirect effects. 

1. Introduction

Cities play a major role in managing critical environmental issues such as energy resource consumption 
(Kennedy et al., 2015) and greenhouse gas (GHG) emissions (Ramaswami et al., 2021). The transition of 
modern urban centres into future sustainable smart cities is going to be critical to ensuring that these 
environmental issues are managed properly (Kamyab et al., 2020). Because the state of any given city is a 
complex function of many variables, data-driven insights are needed to formulate effective policies that drive 
the transition to improved sustainability (Gue et al., 2021). 
Machine learning (ML) tools have become ubiquitous in the modern world (Jordan and Mitchell, 2015). They 
provide a powerful means of detecting patterns in data and then converting such patterns into models that can 
be used for analysis, classification, and prediction. Examples of recent applications include the analysis of alarm 
systems in process plants (Tamascelli et al., 2020) and the prediction of higher education outcomes (Aviso et 
al., 2020). ML tools have also been used to find patterns in the environmental data of cities and countries. For 
example, Mostafa (2010) used self-organising maps (SOM) to cluster countries based on ecological footprint; 
Ma et al. (2012) did a similar study using support vector machines (SVM). Sugiawan and Managi (2019) used 
ML to analyse patterns in inclusive wealth data of nations. Lopez et al. (2021) used rough set-based machine 
learning (RSML) to determine how country-level socioeconomic attributes predict emissions levels. Gue et al. 
(2021) used fuzzy cognitive maps (FCM) to determine Circular Economy (CE) drivers at the city level. 
Conventional ML tools such as SOM and SVM have been criticised for lack of transparency and interpretability. 
As a result, there has been increased interest in explainable artificial intelligence (XAI) approaches that plausible 
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balance interpretability with sheer statistical performance (Calegari et al., 2020). These features are important 
in applications where clear insights need to be drawn from ML model outputs. One such approach is RSML 
(Mahajan et al., 2012), which generates models consisting of if/then rules for prediction or classification 
purposes. RSML is based on the theory of rough sets proposed by Pawlak (1982) and is suited for dealing with 
data with non-deterministic data with unclear patterns. A comprehensive tutorial on RSML can be found in 
Komorowski (2014). In addition to predicting country-level emissions (Lopez et al., 2021), recent sustainability-
oriented applications include the prediction of reservoir integrity for CO2 sequestration (Aviso et al., 2019) and 
the molecular design of environment-friendly specialty chemicals (Radhakrishnapany et al., 2020). The features 
of RSML make it well-suited to the problem of classifying sustainable cities, but no work has reported any such 
application to date. The purpose of this paper is to address this research gap. 
In this work, RSML is used to generate ternary rule-based models to classify cities into good, moderate, and 
poor performers with respect to energy intensity and GHG aspects based on different social, environmental, 
and economic criteria from the Sustainable Cities Index (SCI) published by Arcadis (2020). The rule-based 
classifiers capture patterns in the data of the cities listed in SCI, using ternary logic due to its favourable statistical 
and decision-support properties (Yao, 2011). The rest of this paper is organised as follows. Section 2 gives the 
formal problem statement. Section 3 discusses an overview of RSML. Section 4 describes the key results of the 
application of RSML to the SCI data, while Section 5 discusses the practical implications of the results. Section 
6 gives conclusions and prospects for future work. 

2. Problem Statement

The formal problem statement is as follows: 
 Given a set of SCI attributes which can be categorized either as condition, C, or decision, D, attributes

of cities;
 Given a set of sample cities, S, where sample j has known performance Cij in the condition attribute i

and known classification Dkj in the decision attribute k;
 The problem is to determine a set of predictive rules which can adequately classify cities into decision

class k in terms of energy intensity and GHG emissions.

3. Rough Set Based Machine Learning

It is normally assumed that objects can be classified based on information about them. However, this assumption 
is unable to deal with vague concepts at the boundaries of so-called crisp (well-defined) sets. Pawlak (1982) 
introduced the rough set theory (RST), which defines vague concepts to be confined between a lower, B∗(X),
and upper approximation, B∗(X) of known crisp concepts. The lower approximation contains all objects that 
clearly belong to the set, while the upper approximation contains elements that can possibly belong to a set. 
The difference between the upper and lower approximation defines the boundary of the rough (vague) concept. 
To facilitate classification using RSML, the information about an object needs to be organised in an information 
table where the rows consist of examples, the columns consist of attributes (e.g., condition and decision 
attributes), and the elements describe the examples in the relevant attribute (Pawlak, 1984). Given a set of 
attributes A, objects may be clustered together because they are indiscernible from each other based on their 
performance in attribute set B where B  A. The objective then is to determine subset B, which will adequately 
cluster objects within the same decision class. The accuracy of the approximation, αB(X) of any subset, B is
defined in Eq(1). Elements can also be defined according to their rough membership, μXB(x), as defined in Eq(2).
This metric provides information with regards to the degree that example x belongs in class X based on the 
information in the attributes of subset B. Redundant information is also eliminated in RST by selecting subset B 
to contain only indispensable attributes; this is referred to as the reduct B, Red(B). The intersection of all reducts 
is known as the core, Core(B).     

αB(X) =
|B∗(X)|

|B∗(X)|
 

 (1)

μX
B(x) =

|B(x) ∩ X|

|X|

 (2) 

Decision rules can then be formed based on identified patterns in data using Eq(1) and using the definition of 
reducts. The support of a rule suppS(, ) refers to the number of samples which exhibit the characteristics of 
the condition, , which results in a decision,  (card(‖Φ ∧ Ψ‖). The certainty factor, cerS(Φ,Ψ) of a rule also
referred to as confidence coefficient is defined by Eq(3). It is the probability that objects exhibiting condition  
results in decision . The coverage factor, covS(Φ,Ψ)Is defined by Eq(4) and refers to the degree to which
samples belonging to a decision  are explained by condition . The strength of a rule, σS(Φ,Ψ), is defined by
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Eq(5) and just indicates the proportion of objects from the sample which is classified under the rule. Further 
details on the basic concepts of RST can be found in Pawlak (1997) and Pawlak (2002). 

cerS(Φ,Ψ) =
card(‖Φ ∧ Ψ‖)

card(Φ)

(3) 

covS(Φ,Ψ) =
card(‖Φ ∧ Ψ‖)

card(Ψ)

(4) 

σS(Φ,Ψ) =
suppS(Φ,Ψ)

card(U)

(5) 

4. Case Study on Sustainable Cities Index

The case study considers the 2016 Sustainability Cities Index (SCI), which evaluates 100 major urban centres 
globally using social (“People”), environmental (“Planet”), and economic (“Profit”) indicators (Arcadis, 2020). The 
data was split into 18 condition attributes and 2 decision attributes; the latter are energy intensity per unit gross 
domestic product (GDP) and GHG emissions per capita.  RSML is used to find patterns of association between 
the conditions and each decision attribute. The condition attributes are summarised in Table 1.  

Table 1: Condition attributes of case study 

Criteria  Sub-criteria Reduct for energy 
intensity (D1) 

Reduct for GHG 
emissions (D2) 

Social Demographics 
Education 

Income inequality 
Work-life balance 
Crime 
Health 
Affordability  

Environmental Environmental risks (EnvtlRisks)  

Green space (GreenSpace)  

Air pollution (AirPoll)  

Waste management (WasteMgmt) 

Drinking water and sanitation 
Economic Transport infrastructure (Transport)  

Economic development 
Ease of doing business (Business)  

Tourism 
Connectivity (Connect) 

Employment 

Of the 100 cities listed in SCI, 60 were selected for use as training data, while the remaining 40 was set aside 
as a validation data set. The original dimensionless SCI scores, which range from 0 to 1, were discretised into 
three categories, where the first category labelled as “Good” (coded as “1”) have scores in the upper quarter (Cij 
or Dkj  0.75), the second category labelled as “Moderate” (coded as “2”) have scores in the two middle quarters 
(0.25  Cij or Dkj < 0.75), and the third category labelled as “Poor” (code as “3”) have scores in the bottom quarter 
(Cij or Dkj < 0.25). RSML was implemented using the software tool ROSE 2.0 (Predki et al., 1998), which can be 
downloaded for free from the developer’s research group website (IDSS, 2020). More than 100 different reducts 
were generated for each decision attribute. Note that the presence of an attribute in a reduct indicates the 
existence of a recurring pattern in the data but does not necessarily indicate direct causality. Reduct selection 
was conducted by inspecting and screening the generated reducts for both plausibility and overlaps (i.e., factors 
influencing energy intensity are also likely to affect GHG emissions). In general, reduct selection should account 
for both data aspects and the user’s domain knowledge (Jia et al., 2016). The reducts selected for the two 
decision attributes are also shown in Table 1, showing that some sub-criteria appear in both reduct sets.  
Using the selected reducts, training was conducted to generate the rules using the “satisfactory description” 
algorithm of ROSE 2.0 (i.e., maximum length = 3, minimum strength = 30 %, minimum discrimination = 90 %). 
The rules generated for energy intensity are summarised in Table 2. It can be seen that there are no rules that 
predict cities with good performance, which indicates that there are no detectable patterns among such cities in 
the training data. The rules for GHG emissions are shown in Table 3. The corresponding statistical performance 
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metrics are also shown in the tables. The rules can be interpreted linguistically as an if/then statement; for 
example, Rule 1 in Table 2 can be stated as: “If environmental risks score is poor then energy intensity score is 
moderate.” Note that the rules reflect patterns of association but do not necessarily imply causality. For each 
decision variable, the rules combine disjunctively (i.e., they are linked together via logical “or”) to give a rule-
based model that summarises patterns in the training data. Within each rule-based model in Table 2 and 3, 
some rules or patterns are more consistent (i.e., with higher certainty) and more prevalent (i.e., with greater 
support, coverage, and strength) than others. The implications of such differences are discussed below. 

Table 2: Rules for classifying cities based on energy intensity (“Energy”) and associated statistics 

Rules  suppS cerS covS σS 
1 (EnvtlRisks = 3)  (Energy = 2) 16 0.94 0.33 0.27 
2 (Business = 1)  (Energy = 2) 24 0.96 0.49 0.40 
3 (GreenSpace = 2) & (Transport = 2)  (Energy = 2) 16 0.94 0.33 0.27 
4 (GreenSpace = 2) & (Connect = 2)  (Energy = 2) 18 0.95 0.37 0.30 
5 (EnvtlRisks = 1) & (Transport = 3)  (Energy = 3) 2 1.00 0.40 0.03 
6 (AirPoll = 3) & (Connect = 1)  (Energy = 3) 3 1.00 0.60 0.05 
7 (Affordability = 2) & (EnvtlRisks = 1) & (AirPoll = 3)  (Energy = 3) 3 1.00 0.60 0.05 
8 (Affordability = 2) & (AirPoll = 3) & (Business = 2)  (Energy = 3) 3 1.00 0.60 0.05 
9 (EnvtlRisks = 1) & (GreenSpace = 3) & (AirPoll = 3)  (Energy = 3) 3 1.00 0.60 0.05 
10 (GreenSpace = 3) & (AirPoll = 3) & (Business = 2)  (Energy = 3) 3 1.00 0.60 0.05 

Table 3: Rules for classifying cities based on GHG emissions and associated statistics 

Rule  suppS cerS covS σS 
1 (Affordability = 1) & (Employment = 3)  (GHG = 1) 7 1.00 0.30 0.12 
2 (EnvtlRisks = 2) & (AirPoll = 2)  (GHG = 1) 8 1.00 0.35 0.13 
3 (AirPoll = 2) & (WasteMgmt = 3)  (GHG = 1) 9 1.00 0.39 0.15 
4 (WasteMgmt = 3) & (Business = 3)  (GHG = 1) 8 1.00 0.35 0.13 
5 (Transport = 3) & (Business = 3)  (GHG = 1) 9 0.90 0.39 0.15 
6 (Affordability = 2) & (GreenSpace = 2) & (AirPoll = 1) &  

(WasteMgmt = 2)  (GHG = 2) 
9 0.90 0.31 0.15 

7 (Affordability = 2) & (EnvtlRisks = 1) & (AirPoll = 3)  (GHG = 3) 3 1.00 0.38 0.05 
8 (Affordability = 2) & (AirPoll = 3) & (Business = 2)  (GHG = 3) 3 1.00 0.38 0.05 
9 (EnvtlRisks = 1) & (GreenSpace = 3) & (AirPoll = 3)  (GHG = 3) 3 1.00 0.38 0.05 
10 (GreenSpace = 3) & (AirPoll = 3) & (Business = 2)  (GHG = 3) 3 1.00 0.38 0.05 
11 (Education = 2) & (EnvtlRisks = 1) & (WasteMgmt = 2) &  

(Employment = 1)  (GHG = 3) 
3 1.00 0.38 0.05 

Table 4: Confusion matrix for energy intensity model 

Actual 
category 

Predicted category 
1 2 3 Unclassified 

1 0 5 1 3 
2 0 23 0 5 
3 0 1.5 1.5 0 

Both rule-based models were then tested on the 40 cities in the validation data set. The confusion matrices are 
shown in Tables 4 and 5. They show the classification performance and errors that occur when the models 
encounter a new set of data that was not used during training. It can be seen that many of the cities in the 
validation data are unclassified (i.e., their scores do not activate any of the rules in the models). For the energy 
intensity model, data of three cities activated multiple conflicting rules, which resulted in non-deterministic 
classification as either moderate or poor performers. The capability to handle such conflicts is a central feature 
of rough set theory and RSML; these cities were counted fractionally (i.e., 0.5 for moderate and 0.5 for poor) 
due to their simultaneous classification in these two categories. In the energy intensity rule-based model, Rules 
6–10 did not match any of the cities in the validation data. In the GHG emissions model, Rules 7–10 were also 
not activated. Note that these rules are characterised in Tables 2 and 3 by small support sets and low strength. 
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Their low generalisation power can be attributed to spurious patterns in the training data; the final rule-based 
models can be reduced in size and complexity by eliminating these rules. 

Table 5: Confusion matrix for GHG emissions model 

Actual 
category 

Predicted category 
1 2 3 Unclassified 

1 12 1 0 5 
2 3 2 0 15 
3 1 0 0 1 

5. Practical Implications

In this section, some practical insights drawn from the two reduced rule-based models are discussed. Air 
pollution appears in the reducts for both energy intensity and GHG emissions. High (“poor”) energy intensity 
suggests the energy inefficiency of an industrialized economy, which is associated with high (“poor”) levels of 
air pollution. This link is seen in Rules 6–10 in Table 2. However, the results in Tables 3 suggest a stronger link 
to GHG emissions as indicated by Rules 2,3, 6–10 . This suggests the validation set consist of cities with different 
combinations of GDP level and rules on the emission limit (application of filtration), offsetting the impact of air 
pollutants on energy intensity.  
Rule 6 in Table 3 reflects a circumstance that “poor” air pollution performance is not associated with “poor” GHG 

emissions levels. This rule shows that a sound solution based on GHG emissions is insufficient in ensuring that 
the environmental sustainability, as the air pollution aspects could still be “poor”. It is inconclusive to assume a 
GHG-optimised solution is automatically environmentally sustainable. Simultaneous optimisation studies, 
considering the synergistic effects, should be encouraged. 
Waste management (WasteMgmt) which accounts for the portion of landfilled solid waste and share of 
wastewater treated, shows is negatively associated with GHG emissions. Rules 3 and 4 (Table 3) show “good” 

waste management leads to high (“poor”) GHG emissions, for which two explanations can be drawn: (i) high 
recycling rates do not lead to low GHG emission; or (ii) “good” waste management could unintentionally lead to 
high waste generation, suggesting potential rebound effect. The burdening impact of recycling has been 
discussed in some of the studies (Bernstad Saraiva et al., 2018). This impact is apparent in less volatile waste 
(e.g., plastic), where the GHG emission of the waste ending up in landfills is less significant than the energy 
(with GHG emissions from energy sources) invested for recycling. However, it only reflects the global warming 
potential, while recycling is still preferable in terms of other impact categories such as eutrophication and land 
use. This rule emphasises the complex trade-offs in waste management and the dominant roles of waste 
generation in GHG emission, where the recovery has a less pronounced role in minimising the GHG emission. 
Other attributes with no clear causality appear in weak rules which may result from spurious patterns in the SCI 
data (e.g., education in Rule 11 of Table 3 ).   

6. Conclusions

In this work, two rule-based ternary classification models for cities were generated from the SCI data using 
RSML. The models categorise cities into good, moderate, and poor performers with respect to energy intensity 
and GHG aspects, based on different social, environmental, and economic attributes. Both models exhibit good 
predictive performance for covered samples in both training and validation data; however, many cities fail to 
exhibit detectable patterns and are not covered by the models’ rules. These initial results show that there are 
no universal rules which could be applied globally. The rule-based models can be used as aids for urban 
planning to induce a shift to more sustainable development trajectories.  
This work can be extended further using RSML or other ML tools. A more apparent set of trends might be 
observable by first clustering the cities based on decisive characteristics prior to using RSML, especially for 
energy intensity as it is relatively a localised issue compared to GHG emission. Future work also should focus 
on exploration of alternative reducts and rule sets coupled with k-fold validation.   
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