

VOL. 83, 2021

DOI: 10.3303/CET2183042

Guest Editors: Jeng Shiun Lim, Nor Alafiza Yunus, Jiří Jaromír Klemeš Copyright © 2021, AIDIC Servizi S.r.l. ISBN 978-88-95608-81-5; ISSN 2283-9216

Synthesis of WO₃/g-C₃N₄ Nanocomposite for Photocatalytic CO₂ Reduction Under Visible Light

Beenish Tahir Muhammad Tahir*, Mohd Ghazali Mohd Nawawi

Department of Chemical Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skuda, Johor Bahru, Johor, Malaysia. mtahir@cheme.utm.my

Greenhouse gas CO_2 emitted through the burning of fossil fuels is a main cause of global warming. Among the different alternatives, photocatalytic conversion of CO_2 using solar energy in the presence of highly efficient photocatalyst is most attractive for the production of solar fuels. In this work, graphitic carbon nitride (g-C₃N₄) dispersed tungsten oxide (WO₃) to construct WO₃/g-C₃N₄ heterojunction was synthesized through hydrothermal approach. The performance of photocatalysts were tested for photocatalytic CO_2 reduction with CH₄ to CO via dry reforming of methane (DRM) under visible light irradiation in a fixed bed photoreactor. The performance of composite catalysts was further tested for photo-catalytic CO_2 reduction via H₂O as reductant and bireforming of methane (BRM) under visible light irradiations. The maximum CO production of 310 µmol g-cat⁻¹ h⁻¹ was observed over WO₃/g-C₃N₄ composite catalyst which is 2.95 and 8.85 folds higher than using pristine g-C₃N₄ and WO₃ photocatalysts. Using BRM process, production of CO was further increased due to the addition of water into CO₂-methane system. In general, significantly enhanced photocatalytic performance of composite catalyst was obviously due to Z-scheme heterojunction formation with efficient charge carrier separation and good band positions under visible light irradiation. The newly developed composite catalysts can effectively be used for recycling greenhouse gases to fuels using solar energy and would be beneficial for cleaner environment.

1. Introduction

Global warming effects due to CO_2 emitted during fossil fuels combustions and other human activities is a major challenge, the world is facing (Khan and Tahir., 2019). The phototechnology via photocatalytic CO_2 reduction through different reforming technologies has been investigated over the years by many researchers. Besides, methane (CH₄) is another greenhouse gas, emitted from agricultural, fossil fuels and biomass process. The utilizing both CH₄ and CO₂ for the production of synthesis gas (CO and H₂) and higher hydrocarbons is a new development in the reforming technologies. The most commonly employed approach for the utilization of both CO₂ and CH₄ includes CO₂ reforming with CH₄ called dry reforming of methane (DRM) (Moral et al., 2018), which has several benefits such as minimizing their level in the atmosphere, and producing equimolar syngas mixture (H₂/CO=1.0)

In thermal reforming, DRM operates under higher reaction temperature, which produces coke and provides instability to catalyst. Using phototechnology, higher activity and photostability can be obtained, in addition of low-cost process for chemicals and fuels production. During the last few years, there has been growing research on photocatalytic CO₂ reduction through DRM under UV and visible light irradiations. Different photocatalysts such as La-doped TiO₂ (Tahir et al., 2017), Pt-loaded TiO₂ (Han et al., 2015), and Au/Rh modified TNTs (László et al., 2016) have been investigated for photocatalytic DRM process under UV-light irradiations.

Recently, graphitic carbon nitride (g-C₃N₄), a 2D layered semiconductor material, is under investigation due to several benefits such as cheaper, easy to prepare and high stability (thermal/chemical). In addition, g-C₃N₄ is active under visible light irradiations due to narrow bang gap energy (E_g~ 2.70 eV) (Shi et al., 2020), compared to wide band gap energy semiconductors such as TiO₂ (E_g~ 3.20 eV). Recently, there has been growing interest on the use of g-C₃N₄ photocatalyst for photocatalytic CO₂ reduction through different CO₂

Paper Received: 07/07/2020; Revised: 05/10/2020; Accepted: 17/10/2020

Please cite this article as: Beenish T., Muhammad T., Mohd Nawawi M.G., 2021, Synthesis of WO₃/g-C₃N₄ Nanocomposite for Photocatalytic CO₂ Reduction Under Visible Light, Chemical Engineering Transactions, 83, 247-252 DOI:10.3303/CET2183042

reduction process. In this perspective, the use of Cu/g-C₃N₄ (Tahir et al., 2017) for DRM under visible light irradiation was investigated. In addition of metals lading, coupling g-C₃N₄ with other semiconductors can be a promising approach to maximize charges separation with higher visible light absorption. Tungsten oxide (WO₃) is a very promising cocatalyst due to its lower band gap energy and higher oxidation potentials (Bafaqeer et al., 2019). In this perspective WO₃/g-C₃N₄ for enhanced photo-catalytic H₂ production has been reported (Fu et al., 2019). The conversion of greenhouse gases over WO₃/g-C₃N₄ catalyst for the production of synthesis gas and valuable fuels would be beneficial for efficient photo-catalytic CO₂ reduction under visible light.

In this study, fabrication of WO₃/g-C₃N₄ heterojunction composite for photocatalytic CO₂ reduction via dry reforming of methane (DRM) and bireforming of methane (BRM) under visible light has been investigated. The photocatalysts were synthesized using hydrothermal approach. The photoactivity of WO₃/g-C₃N₄ was further examined in different reforming systems to understand the role of sacrificial reagents in CO₂ reduction process. The effect of irradiation time and reaction mechanism to understand the role of each component in the composite catalyst was further investigated.

2. Experimental

2.1 Materials synthesis and characterization

The bulk g-C₃N₄ was prepared by heating melamine (Sigma Aldrich) at 550 °C for 2 h in a muffle furnace under air atmosphere. The product obtained was grinded to get bulk g-C₃N₄, which was further treated with acetic acid and dried overnight to get g-C₃N₄ (Tahir et al., 2020). For the synthesis of WO₃/g-C₃N₄ composite, ultrasonic assisted physical mixing approach was employed. Typically, 1 g of g-C₃N₄ was dispersed in a methanol and stirred for 6 12 h to get uniform dispersion. Afterwards, specific amount of WO₃ (50 wt% g-C₃N₄) dispersed in a methanol was added to above solution under stirring for another 12 h. Finally, samples were dried at 100 °C overnight to get WO₃/g-C₃N₄ composite samples. All the samples were characterized using XRD, PL< SEM, TEM and UV visible techniques. X-ray diffraction (XRD, RIGAKU), operated with Cu-Kα radiation at λ =0.154178 nm, 40 kV and 30 mA. The morphologies were obtained by FESEM, ZEISS Crossbeam 340 and TEM, HITACHI HT7700. The PL analysis was conducted using Lab RAM HR Evolution, HORIBA and UV-visible analysis was conducted using Cary 100 Agilent, Model G9821 A.

2.2 Photoactivity test

The photoactivity test was conducted in a stainless steel photoreactor with diameter 6 cm, lighting surface 28 cm² and total volume 150 cm³. The reactor was equipped was a glass window for passing the light irradiations. The experiments were conducted for photocatalytic CO₂ reduction using H₂O, H₂, and CH₄ reducing agents. A HID Xenon lamp with power 35 W with wavelength 420 nm and intensity 20 mW cm⁻² was used as a source of visible light. The lamp was located at the top of glass reactor and equipped with cooling fans to remove heat. Specifically, 150 mg powder photocatalyst was evenly dispersed at the bottom of stainless-steel chamber. High purity gases (CO₂, 99.99 % and CH₄, 99.99 %), regulated by mass flow controllers (MFC), were passed through the reactor to remove the air and to saturate the catalyst surface. The CO₂/CH₄ feed ratio of 1.0 was used in all the experiments. All the experiments were conducted under normal temperature and atmospheric pressure. The products were analysed using gas chromatograph (GC 6890 N). The Carboxen-1010 PLOT Capillary Column equipped with a thermal conductivity detector (TCD) and a flame ionized detector (FID) was used for the separation of CO, CH₄, CO and H₂ products.

3. Results and discussion

3.1 Catalyst characterization

Figure 1a shows XRD analysis of $g-C_3N_4$ and $WO_3/g-C_3N_4$ composites. Obviously, $g-C_3N_4$ presents two peaks positioned at 2-thetea of 13.10° and 27.44°, relating to polymeric structure graphitic carbon nitride. Similarly, WO_3 peaks in $WO_3/g-C_3N_4$ composite were appeared at 2-0 of 23.01°, 23.52°, 24.25°, 26.49° 28.55°, 28.83°, 33.17°, 33.47°, 34.07°, 35.52°, 41.39°,41.83°,47.15°, 48.21°, and 49.81°, confirming the presence of WO_3 in the composite sample (Card no 01-083-0950) (Tahir et al., 2020). More importantly, all the peaks relating to $g-C_3N_4$ were appeared in the composite of $WO_3/g-C_3N_4$, confirming, successful fabrication of composite through ultrasonic approach. Figure 1b presents photoluminescence (PL) plots of pristine $g-C_3N_4$ and $WO_3/g-C_3N_4$ composite. Obviously, highest PL intensity was obtained in pristine $g-C_3N_4$ was coupled with WO_3 . This declined in PL intensity was due to faster charge carrier separation with hindered recombination rate over the $WO_3/g-C_3N_4$ composite sample. This further confirms successful fabrication of $WO_3/g-C_3N_4$ heterojunction.

Figure 1: (a) X-ray diffraction patterns of $g-C_3N_4$ and $WO_3/g-C_3N_4$ composite samples; (b) Photoluminescence analysis for $g-C_3N_4$ and $WO_3/g-C_3N_4$ samples

Figure 2: FE-SEM analysis of (a) $g-C_3N_4$ and (b) $WO_3/g-C_3N_4$ samples; (c) TEM analysis of $WO_3/g-C_3N_4$ samples, (d) UV-visible analysis of $g-C_3N_4$, WO_3 and $WO_3/g-C_3N_4$ photocatalysts.

The morphology of g-C₃N₄ and WO₃/g-C₃N₄ composite were further investigated using FESEM and TEM characterization techniques and results are demonstrated in Figure 2. Figure 2a show morphology of g-C₃N₄, in which, obvious two-dimensional folded sheets of graphitic carbon nitrides could be observed. FESEM image in Figure 2b shows morphology of WO₃/g-C₃N₄ composite. It could be seen a good dispersion of WO₃ with g-C₃N₄ nanosheets. A further interaction of WO₃ with 2D g-C₃N₄ nanosheets could be observed in TEM image as demonstrated in Figure 2c. Obviously, WO₃ microspheres were distributed over g-C₃N₄ nanosheets, producing a heterojunction between both the semiconductors.

The UV-visible analysis was further conducted to determine band gap energy and light absorption trends of g- C_3N_4 and $WO_3/g-C_3N_4$ samples. Obviously, both g- C_3N_4 and $WO_3/g-C_3N_4$ has response of light absorption under visible light. The light absorption wavelengths of 461.35, 443.58 and 432.96 nm were obtained for WO_3 ,

 $g-C_3N_4$ and WO_3/g-C_3N_4 samples. This confirms higher visible light absorption of the samples and would be beneficial for photocatalytic CO₂ reduction applications (Tahir et al., 2020). The band gap energies of 2.70, 2.81 and 2.88 eV were obtained for WO_3, g-C_3N_4 and WO_3/g-C_3N_4 samples.

3.2 Photocatalytic CO₂ reduction

The photoactivity test of $g-C_3N_4$, WO_3 and $WO_3/g-C_3N_4$ for photocatalytic CO_2 reduction with CH_4 in the presence of water through bi-reforming of methane (BRM) under visible light irradiations in a fixed bed photoreactor. The amount of photocatalyst loaded was 0.15 g, dispersed uniformly inside the reactor. The feed ratio of CO_2/CH_4 of 1.0 was employed for all the experiments. All the reactions were conducted at normal temperature and atmospheric pressure.

Figure 3a shows photocatalytic CO₂ reduction for the production CO evolution over g-C₃N₄, WO₃ and WO₃/g-C₃N₄ photocatalysts during photocatalytic CO₂ reduction with H₂O/CH₄ photocatalysts. Using pure WO₃, 35 µmol g-cat⁻¹h⁻¹ for CO was detected. Comparatively, 105 µmol g-cat⁻¹h⁻¹ of CO was obtained over g-C₃N₄ photocatalyst. Obviously, lower photoactivity was attained over WO₃ due to its reduction potential (+0.76 eV) (Ye and Web, 2019), which is more positive than is required for CO₂ reduction (-0.48 eV). Besides, g-C₃N₄ has 2D layered structure, and efficient charges separation efficiency for photocatalytic reaction in addition of higher reduction potential (CB -1.20 eV). When, WO₃/g-C₃N₄ were coupled highest photoactivity of 310 µmol g-cat⁻¹h⁻¹ of CO was attained. This significantly enhanced photoactivity of WO₃/g-C₃N₄ composite was evidently due to faster charges separation with good oxidation and reduction potentials for DRM reaction under visible light irradiations (Guo et al., 2020). This confirms significantly enhanced performance of WO₃/g-C₃N₄ composite and it can be further employed for investigating different reforming reactions.

Figure 3: (a) Photocatalytic CO₂ reduction by CH₄/H₂O to CO over different catalysts; (b) Photocatalytic DRM and BRM for CO₂ reduction over WO₃/g-C₃N₄; (c) Performance analysis of reforming systems for CO₂ reduction to CO; (d) proposed schematic mechanism of CO₂ reduction to CO over WO₃/g-C₃N₄ composite.

The performance of WO₃/g-C₃N₄ composite catalyst was further tested in different photocatalytic systems such as reduction of CO₂ with H₂O, photocatalytic reversed water gas shift reaction (RWGSR), DRM and BRM reactions as shown in Figure 3c. It could be seen that highest CO evolution rate was attained during CO₂ reduction in the presence of hydrogen through RWGS reaction. Using DRM process lowest CO production was obtained due to high stability of CO₂ and CH₄ molecules. Using water and CO₂, higher amount of CO was evolved compared to DRM reaction, but lower than RWGS and BRM reactions. All these findings confirm that not only photocatalyst, but reforming reactions are also important to maximize photocatalysis process. The selection of both photocatalyst and reducing agents are crucial for selective production of fuels during CO₂ conversion under visible light irradiation. Previously, photocatalytic CO₂ reduction over WO₃-TiO₂/Cu₂ZnSn₄ (Raza et al., 2020) and WO₃/g-C₃N₄ with CO and CH₄ production (Li et al., 2020) have been investigated. Comparatively, efficient photocatalytic CO₂ reduction with CO and H₂ production through DRM and BRM was observed over WO₃/g-C₃N₄ composite through the involvement of Eq(1) and Eq(2).

$$CH_4 + CO_2 \longrightarrow 2CO + 2H_2 \qquad \Delta H_{298K} = +247 \text{kJ/mol}$$
(1)

$$3CH_4 + CO_2 + 2H_2O \longrightarrow 4CO + 8H_2 \quad \Delta H_{298K} = +220kJ/mol$$
⁽²⁾

3.3 Reaction mechanism

The photocatalytic CO₂ reduction using water/methane reducing agnets over WO₃/g-C₃N₄ composite under visible light involves oxidation and reduction reaction through the involvement of electrons and holes has been illustarted in Figure 3d. When visible light strike over the composite catalyst WO₃ is activated first due to its lower bandgap energy (E_g~ 2.70) as illustarted in Eq(3), producing electrons and holes. As the CB of WO₃ is more positive (CB~ 0.74) (Ye and Wen., 2019) than g-C₃N₄ conduction band (CB~ -1.20). The photogenerated electrons have potential to transfer from CB of WO₃ towards VB of g-C₃N₄, enabling their efficient separation (Eq4). The photogenerated electrons are consued during CO₂ reduction process with CO production and holes were consumed for water and methane oxidation through the reactions in Eqs(5) to (7).

$$WO_3 \xrightarrow{hv} WO_3(e^-) + WO_3(h^+)$$
 (3)

$$g - C_3 N_4 + W O_3(e^-) \longrightarrow g - C_3 N_4(e^-) + W O_3 \tag{4}$$

$$CO_2 + 2H^+ + 2e^- \longrightarrow CO + 2H_2O \tag{5}$$

$$H_2 0 + 2h^+ \xrightarrow{hv} 2H^+ + 1/2O_2 \tag{6}$$

$$CH_4 + h^+ \xrightarrow{h\nu} H^+ + \bullet CH_3$$
(7)

Accoridng to experimental results, CO_2 was efficiently converted to CO through different reforming reactions such as DRM, BRM and RWGS reactions. The significantly enhanced phototacivity for CO_2 reduction over $WO_3/g-C_3N_4$ composite was due to Z-scheme heterojunction formation with efficient charges separation.

4. Conclusions

The WO₃/g-C₃N₄ composite catalyst was successfully synthesized and tested for photocatalytic CO₂ reduction under visible light irradiations. In Z-scheme WO₃/g-C₃N₄ composite, efficient charge separation was observed enabling more production of CO during photocatalytic dry and bireforming reactions. The highest CO production of 310 μ mol g-cat⁻¹h⁻¹ over WO₃/g-C₃N₄ composite was achieved. The performance of different reforming reactions such as dry reforming of methane, bireforming of methane and reverse water gas shift

reactions were further investigated. Using BRM and RWGS reactions, highest amount of CO was evolved under the same reaction conditions. It could be concluded that WO₃/g-C₃N₄ heterojunction is a promising photocatalyst for photocatalytic CO₂ reduction under visible light irradiation and can be employed in other solar energy assisted applications. due to efficient charges separation and higher visible light absorption.

Acknowledgements

This work is sponsored by Ministry of Education (MOE), Malaysia under Long Term Research Grant Scheme (LRGS NanoMITE, 203/PJKIMIA/6720009 and UTM, Vot R. J130000.7851.4L900).

Reference

- Bafaqeer A., Tahir M., Amin N.A.S., 2019, Well-designed ZnV₂O₆/g-C₃N₄ 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO₂ to fuels, Applied Catalysis B: Environmental, 242, 312-326.
- Fu J., Xu Q., Low J., Jiang C., Yu J., 2019, Ultrathin 2D/2D WO₃/g-C₃N₄ step-scheme H₂-production photocatalyst, Applied Catalysis B: Environmental, 243, 556-565.
- Guo R.-t., Liu X.-y., Qin H., Wang Z.-y., Shi X., Pan W.-g., Fu Z.-g., Tang J.-y., Jia P.-y., Mia Y.-f., Gu J.-w, 2020, Photocatalytic reduction of CO₂ into CO over nanostructure Bi₂S₃ quantum dots/g-C₃N₄ composites with Z-scheme mechanism, Applied Surface Science, 500, 1-9.
- Han B., Wei W., Chang L., Cheng P., Hu Y. H., 2015, Efficient Visible Light Photocatalytic CO₂ Reforming of CH₄, ACS Catalysis, 6 (2), 494-497.
- Khan A. A., Tahir M., 2019, Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO₂ reduction to renewable fuels, Journal of CO₂ Utilization, 29, 205-239.
- László B., Baán K., Varga E., Oszkó A., Erdőhelyi A., Kónya Z., Kiss J., 2016, Photo-induced reactions in the CO₂-methane system on titanate nanotubes modified with Au and Rh nanoparticles, Applied Catalysis B: Environmental, 199, 473-484.
- Li X., Song X.C., Cheng Ma. Y., Shen D., Zhang S., Liu W., Huo P., Wang H., 2020, Direct Z-Scheme WO3/Graphitic Carbon Nitride Nanocomposites for the Photoreduction of CO₂, ACS Applied Nano Materials, 3 (2), 1298-1306.
- Moral A., Reyero I., Alfaro C., Bimbela F., Gandia L.M., 2018, Syngas production by means of biogas catalytic partial oxidation and dry reforming using Rh-based catalysts, Catalysis Today, 299, 280-288.
- Raza A., Shen H., Haidry A.A., Sun L., Liu R., Cui S., 2020, Studies of Z-scheme WO₃-TiO₂/Cu₂ZnSnS₄ ternary nanocomposite with enhanced CO₂ photoreduction under visible light irradiation, Journal of CO₂ Utilization, 37, 260-271.
- Shi H., Du J., Hou J., Song W.C., Li K., Gurzadyan G.G., Guo X., 2020, Solar-driven CO₂ conversion over Co²⁺ doped 0D/2D TiO₂/g-C₃N₄ heterostructure: Insights into the role of Co²⁺ and cocatalyst, Journal of CO₂ Utilization, 38, 16-23.
- Tahir B., Tahir M., Amin N.A.S., 2017, Photocatalytic Carbon Dioxide and Methane Reduction to Fuels over La-Promoted Titanium Dioxide Nanocatalyst, Chemical Engineering Transactions, 56, 1123-1128.
- Tahir, B., Tahir M., Amin N.A.S., 2017, Photocatalytic Carbon Dioxide Reduction to Fuels Over CuLoaded g-C₃N₄ Nanocatalyst under Visible Light, Chemical Engineering Transactions, 56, 403-408.
- Tahir B., Tahir M., Nawawi M.G.M., 2020, Highly stable 3D/2D WO₃/g-C₃N₄ Z-scheme heterojunction for stimulating photocatalytic CO₂ reduction by H₂O/H₂ to CO and CH₄ under visible light, Journal of CO₂ Utilization, 41, 101270.
- Ye L., Wen Z., 2019, ZnIn₂S₄ nanosheets decorating WO₃ nanorods core-shell hybrids for boosting visiblelight photocatalysis hydrogen generation, International Journal of Hydrogen Energy, 44 (7), 3751-3759.
- Zhu Z., Huang W.-R., Chen C.-Y., Wu R.-J., 2018, Preparation of Pd–Au/TiO₂–WO₃ to enhance photoreduction of CO₂ to CH₄ and CO, Journal of CO₂ Utilization, 28, 247-254.