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Ostreopsis cf. ovata, a benthic toxic marine dinoflagellate, has been recorded along Italian coasts since the 
'90, but large bloom events have been reported only in recent years. In 2005, a monitoring programme started 
along the Ligurian coast (North-western Mediterranean), where time series of cell abundances have been 
collected for several sites, together with a range of related environmental variables. Data of cell abundances in 
15 sites, together with environmental data provided by meteo-marine forecasting models used by the Regional 
Environmental Agency (ARPAL), have been used to implement a predictive modelling tool, able to forecast 
Ostreopsis cells concentration threshold exceedance as a function of meteo-marine forecasts. Starting from 
the experience of the predictive model implemented in 2015, the Quantile Regression Forest (QRF) has been 
applied: the model has been trained on past data (from 2015 until 2017) and tested with data taken during the 
two last available years (2018 and 2019). The use of this extremely adaptable regression model to evaluate 
threshold exceedance has shown a good capacity to predict overcoming events at a given spatial location. 
This tool can help the Regional Agency in the decision making process, providing an alert when/where a given 
alarm threshold is exceeded in order to trigger the emergency procedures. This is a first step in defining a 
predictive sampling strategy able to better capture bloom events.  
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1. Introduction 

Ostreopsis species are largely distributed from tropical to temperate marine areas worldwide and since the 
early part of the twenty-first century, Ostreopsis blooms regularly occur in the Mediterranean Sea during 
summer-autumn (Vila et al., 2001; Turki, 2005; Aligizaki and Nikolaidis, 2006; Mangialajo et al., 2008; Totti et 
al., 2010; Illoul et al., 2012; Ismael and Halim, 2012; Pfannkuchen et al., 2012). These phenomena seem to 
have recently increased, and the relationship with eutrophication and climate change has been hypothesized 
(Hallegraeff, 2008; Wells et al, 2020). Economic and social interests are affected by blooms, as they are 
responsible for respiratory and skin problems on humans (Tichadou et al., 2010; Del Favero et al., 2012) and 
benthic marine organisms (Pagliara and Caroppo, 2012; Gorbi et al., 2013; Carella et al., 2015). 
Ostreopsis species have been, in the last decades, implicated in outbreaks causing health issues in countries 
along the northern Mediterranean coasts, particularly Spain, Italy and Greece. In 2007, the Italian Ministry of 
Health promoted the introduction of management actions related to the risk associated to O. cf. ovata blooms 
within the bathing water regulation, integrating surveys of Ostreopsis presence, and defining a three-phase 
monitoring plan: a routine phase, an alert phase and an emergency phase, identified by thresholds of cells 
concentrations in the water of, respectively, 10,0000 cells/l (Alert) and 30,000 cells/l (Warning), followed by 
adequate communication to the public (Funari, 2014). In this context, applying cross-industry learning from the 
high hazard process sector, it seems advisable to perform a preventive environmental risk assessment, 
implementing suitable prediction criteria and performance indicators, addressing not only sea use and 
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emergency planning, but also structural interventions for the long-term prevention (Fabiano et al., 2017). 
Several studies have highlighted the influence of environmental factors on bloom dynamics. Temperature has 
been identified as an important trigger affecting its distribution, though its role is not the same in all coastal 
areas around the world (Accoroni, 2016). Salinity turned out to be positively correlated with O. cf. ovata 
abundance (Carnicer, 2015), but the relationships between algal blooms and salinity are more complicated 
and other factors, such as nutrient levels, which are typically associated to low salinity waters, have to be 
considered. Studies have provided increasing evidence of a link between the nutrient enrichment of coastal 
waters (anthropogenic eutrophication) and harmful algal events (Glibert et al., 2010). However, there is very 
limited information on the relationships between nutrient concentrations and the occurrence of Ostreopsis 
blooms. Several studies considered hydrodynamic condition as a main factor affecting Ostreopsis bloom 
trends, highlighting that higher abundances are observed in sheltered sites compared to exposed ones 
(Barone, 2007; Totti et al., 2010). However, effects of hydrodynamics and turbulence may lead to opposite 
effects in each bloom phase. Despite the number of studies on Ostreopsis biology, ecology and toxin 
production, several aspects about the environmental concerns associated with this genus remain still unclear. 
Indeed, the complexity of conditions leading to blooms of this dinoflagellate is dependent on the specific area, 
thus site specific characteristics must be taken into account when implementing a predicting model.  
As far as the North-Western Mediterranean is concerned, a preliminary descriptive model of the benthic O. cf. 
ovata bloom events was produced for the Ligurian Sea (Asnaghi et al., 2012), highlighting a relevant role of 
seawater temperature and hydrodynamics in driving the bloom. The percentage of variation explained by a 
relatively small set of variables was remarkably large (around 80%), highlighting the likelihood that a set of key 
seawater and meteorological variables could be used as good predictors in forecasting potential toxic events. 
These findings paved the way to building reliable predictive models based on a small set of variables (mostly 
meteorological) and a first predictive model of O. cf. ovata concentrations in seawater was built in by Asnaghi 
et al. (2017) using the Quantile Regression Forests (QRF).  
Herein, starting from above experience, a machine learning based approach is proposed to predict the 
concentration of O. cf. ovata in seawater in 15 sites along the Ligurian coast, and the related threshold 
exceedance probability, using seawater and meteorological variables, derived from numerical forecasting 
models. The methodology provides a tool for local environmental and public health agencies, as well as a 
support for the agency in charge of monitoring in planning sampling activities to better capture bloom events.  

2. Material and Methods 

2.1 Theoretical bases of the model 

A predictive model of O. cf. ovata concentrations in seawater was built in previous work (Asnaghi et al., 2017) 
using the Quantile Regression Forests (QRF), an ensemble machine learning method (Meinshausen, 2006), 
as the best option after the comparison of several modeling techniques (Ottaviani et al., 2015).  
QRF is an inference scheme based on the Random Forests (RF) general method (Breiman, 2001). The basic 
RF algorithm grows an ensemble of trees in which, for each tree, only a sub-sample (“in-bag”) of the data is 
used for the training, and the remaining part (“out-of-bag”) is used for testing. In addition, only a random 
subset of predictor variables is considered to split point selection at each tree node. RF are useful to model 
complex input-output relations without assuming any information about its functional form and about the 
probability distribution of the variables. The size of the random subset is the single tuning parameter of the 
algorithm. Instead of a single output, the QRF provides a whole distribution of predicted values for each 
combination of input features, allowing the selection of the best quantile for prediction. The key difference 
between QRF and RF is that for each node in each tree, RF keeps only the mean of the observations that fall 
into this node and neglects all other information, while QRF keeps the value of all observations in this node, 
not just their mean, and assesses the conditional distribution based on this information. 

2.2 Study area 

Since 2005, regional monitoring surveys of Ostreopsis cf ovata cell concentrations in seawater have been 
carried out by ARPAL (Regional Environmental Agency) from June to September at 14 sites along the 
Ligurian coast (Figure 1). Sampling sites are selected in sheltered areas, where the coast morphology and 
environmental characteristics are favorable for Ostreopsis proliferation: shallow water, poor water exchange 
(i.e., near coast protection structures); rocky-pebbly bottom; presence of macroalgae. Sampling is carried out 
according to the three-phase monitoring plan defined by regulation: twice a month for the routine phase, and 
repeated in case of exceeding the alert threshold. Data collected from 2015 to 2019 on the 14 sites monitored 
by ARPAL, together with data collected by Genoa University at one monitoring station along Genoa coast, 
were used. 
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Figure 1. Distribution of the 15 sampling sites along the Ligurian coast line. 
 

2.3 Environmental input data 

On the basis of previous studies from the authors (Asnaghi et al., 2012, Asnaghi et al., 2017) and literature 
(Accoroni and Totti, 2016), for the present study, the environmental variables considered for algae 
concentration prediction were: seawater surface temperature, salinity, current speed and direction, air 
temperature, wind speed and direction, atmospheric pressure. All variables were derived from models 
operated by ARPAL and successfully validated (Vairo et al., 2017a), with the aim of setting up an operative 
predictive model. Meteorological data were obtained from the Limited Area Atmospheric Model MOLOCH, 
while seawater variables were obtained from the hydrodynamic model of the Ligurian Sea, developed with the 
three-dimensional finite volume MIKE 3 Flow Model FM (DHI, 2019).  The hydrodynamic model is based on a 
flexible mesh approach, with the finest horizontal resolution of 50 m along the coast of Metropolitan city of 
Genova (Errore. L'origine riferimento non è stata trovata.) and approximately 500m in the remaining 
western and eastern Ligurian coast, and a hybrid vertical discretization system (σ and z) to account for the 
stratification effects. For environmental risk management, especially related to coastal phenomena, availability 
of high resolution models can highly influence results reliability both in the atmospheric environmental 
compartment (Vairo et al., 2014) and in sensitive sea environments (Vairo et al. 2017b, Magri et al. 2019).  

2.4 Construction of the predictive model 

A regression model was built using 10 features as predictors: 1-station ID, 2-day of the year, 3-sea surface 
temperature, 4-air temperature, 5-salinity, 6-atmospheric pressure, 7-East-West component of the wind 
speed, 8-North-South component of the wind speed, 9-East-West component of the surface sea current, 10-
North-South component of the surface sea current. 
All features were coded as continuous variables, apart from station ID that is a categorical variable with 15 
unordered possible values. The response variable was base ten logarithms of the concentration of Ostreopsis 
cf. ovata in seawater. The explicit use of the station ID as a predictor is related with possible difference in 
behavior among the stations, due to their physical or geographic characteristics. In line of principle it should be 
possible to train a single model without this information or 15 different models for the 15 sites, but these 
options have different drawbacks. The first ignores the relevant differences among sites, surely affecting the 
blooms, the second uses too little data for training each model properly. The choice of a mixed model, using 
the station ID as a predictor, includes geographical information and allows information sharing among sites. 
Data collected from 2015 to 2019 were used. Each tree was grown using a bootstrapped sample containing 
about 60% of all the data, with 5 features tried at each split. A total of 504 entries were present in the whole 
dataset, with 52 candidate bloom events collected during summer with the following distribution: 266 entries 
(and 32 bloom) in 2017 and before; 119 entries (and 11 bloom events) in 2018; 119 entries (and 9 bloom 
events) in 2019. 
The proposed methodology for the monitoring divides the dataset in a training part (the past years) and a 
testing part (the current year) and should be repeated yearly in order to maintain its predictive capability. 
However, bloom events in last years are quite rare and so to get a more reliable assessment of performance 
we used both 2018 and 2019 as a cumulated test case (20 blooms). However, the use of RF allows also an 
assessment of model performance even without this data splitting, thanks to the OOB mechanism (each tree 
of the forest is tested only on data outside its training set). This kind of analysis gives good hints about model 
tuning and feature relative importance. The QRF model is trained in regression mode, aiming to minimize the 
Mean Square Error (MSE) between real values and predictions, but it has been tested in classification mode, 
using 10,000 cells/l as a threshold. This was done in order to give maximum flexibility in changing the 
threshold without affecting the training, so the same model could work with another threshold as well. 
Moreover, prediction of bloom events contains not only a single value for concentration, but also a confidence 
interval of the estimate, and this is another useful feature of the regression model. The confidence interval 
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allows the evaluation of the probability of exceeding the threshold, enforcing the confidence of the prediction 
itself. However, we are not directly interested in exploiting the concentration values for this kind of study, 
therefor the main output is only classification, even if model capability is broader. 
 
3. Results and discussion 

3.1 True and false positive rate 

In order to better describe the characteristics of the model, the probability at which an in situ concentration 
above 10,000 cells/l was correctly predicted ('True bloom' condition, that is the True Positive Rate, TPR) was 
computed for each quantile of the predictions in the OOB mode. Similarly, the probability of erroneously 
predicting bloom events when measured concentrations were below the specified threshold of 10,000 cells/l 
('False bloom' condition, that is the False Positive Rate, FPR) was computed. Results were then plotted as 
probability versus quantile (Figure 2). The curves indicate that there is a range of quantiles in which TPR is 
significantly larger than FPR, and this suggests an 85-quantile as a good value for the model. For the present 
study, it was chosen to accurately predict the highest possible number of bloom events over a season, and, 
concurrently, adjusting the accepted probability of generating false alarms. However, other good tradeoffs are 
possible, depending on the real costs of false positive and false negative predictions. 

3.2 Feature relative importance 

Using the whole dataset we computed also the relative importance of each feature. For each feature, we 
permuted the values of this feature across each observation in the whole dataset and measured how worse 
the MSE becomes after the permutation. Results are shown in Figure 2. 
The plot shows a clear strong importance of the site (n.1) and the day of the year (n.2), that is seasonality, and 
this is largely expected. Apart from these, sea surface temperature (n.3) continues to be the main driver for 
blooms. Other variables exerted a less clear impact on model prediction, and this may be dependent on the 
specific measure adopted for quantifying importance 

 
Figure 2. TPR and FPR curves vs quantile (left figure) and Features importance plot (right hand figure). 

3.3 Model validation 

Model validation was performed by generating predictions of concentrations of Ostreopsis cf. ovata in the 
water column using meteorological and hydrodynamic data generated from June 2018 to September 2019 by 
the MIKE 3 and MOLOCH models (238 samples) but with a QRF model trained with data up to September 
2017 (266 samples). These values were then compared to actual measurements of concentration of O. cf. 
ovata and a confusion matrix of bloom detection has been computed.  

Table 1: Confusion matrix of predictions.  

 Predicted 

Observed  Bloom 
 

No bloom 

Bloom True bloom alert (13) Undetected bloom  (7) 
No bloom False bloom alert (56) No bloom (162) 
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This kind of test represents a possible operating strategy of the model and shows the capability to deal with 
data collected in different years without degradation. With this data, in fact, TPR is 65% and FPR is 25%, not 
too different from TPR/FPR estimated with the whole dataset in OOB mode. The results of this test suggest 
that further analyses are needed and the present methodology should be useful to guide the sampling 
strategy. Yet, both estimates are not indicative of the detection performance of the full Ostreopsis monitoring 
chain. 

4. Conclusions 

Ostreopsis cf ovata blooms regularly occur in the Ligurian Sea during summer since 2005. Due to the 
associated risk for health problems on humans, a monitoring plan, carried on by ARPAL for the Ligurian 
Region, was introduced by the Italian Ministry of Health as part of the risk management actions. Survey 
campaigns follow a three-phase monitoring plan: a routine phase, that considers, from June to September, at 
least two sampling events per month, an alert phase and an emergency phase, identified by thresholds of 
cells concentrations in the water of, respectively, 10,0000 cells/l (Alert) and 30,000 cells/l (Emergency), which 
require more intense sampling activities, followed by an adequate communication to the public. Monitoring 
campaigns are time intensive, and are carried out at a frequency that may not be appropriate to detect the 
variability of Ostreopsis dynamics. The routine phase samples are not always able to catch local blooms, while 
extra sampling during alert and emergency phases should be frequent enough to be able to identify the exact 
time period when conditions are actually associated with health risk for the population. However, Ostreopsis 
concentration alone is not sufficient to identify the duration of the health emergency, as environmental 
conditions, such as wave, wind, rain and temperature, can highly influence bloom effects over a small scale (in 
space and time). The use of a predictive model to support sampling strategy in both routing phase, and in the 
alert/emergency phase, could lead to a reduction of costs and to an optimization of the sampling strategy to 
provide a higher quality service of early warning. The proposed predictive model, being based on data 
generated by meteorological and hydrodynamic forecasting models, can be used in an operation way, 
providing important information of predicted Ostreopsis concentration as well as probability of threshold 
exceedance, thus supporting ARPAL in optimizing monitoring campaign designs, and possibly limit actual 
sampling to cases of predicted bloom events. Additionally, this predictive tool can help the Regional Agency in 
the decision-making process, providing an alert when/where a given alarm threshold is exceeded in order to 
trigger the emergency procedures. In this vision, the use of the Quantile Regression Forests (QRF) allows 
mimicking a more or less risk inclined approach for coastal managers.  
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