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Among all the macro-pollutants released by waste combustion, acid contaminants such as sulphur dioxide, 
hydrogen chloride and hydrogen fluoride have the lowest emission standards in environmental regulations in 
EU, USA and China. Their removal is thus a key step of flue gas treatment in waste-to-energy (WtE) plants. A 
widespread approach for acid gas removal is by in-duct injection of dry powdered sorbents, which neutralize 
the acid pollutants by gas-solid reaction. However, systems based on dry injection, albeit cost-effective and 
easy to operate, suffer from a limited knowledge of the gas-solid reaction process at industrial operating 
conditions. High excess of sorbent feed rate is generally required to obtain high acid gas removal efficiencies.  
The present study proposes a multivariate statistical approach to the modelling of acid gas treatment units, 
with the aim of extracting information from real process data in order to derive a predictive model of dynamic 
acid gas removal efficiency. Specifically, process data regarding the composition of the flue gas, the sorbent 
feed and other operating conditions were elaborated to characterise the different phenomena that influence 
acid gas abatement. Eventually, a partial least squares (PLS) regression was set up to predict the outlet 
concentration of hydrogen chloride as a function of the measured process variables. The resulting model is a 
step forward with respect to previously available stationary models. Its simplicity and low computational cost 
could make PLS a promising candidate for model-based process control. Nonetheless, a linear approach such 
as PLS still comes short of predicting large instantaneous deviations from the typical range of operation (e.g. 
abrupt peaks in inlet acid gas load), for which a modification of the PLS model to incorporate non-linear 
behaviour is envisaged.    

1. Introduction 
Waste incineration is a waste-to-energy (WtE) process that allows the volume and hazard reduction of 
unsorted waste, while recovering energy and thus reducing the use of fossil fuels. Waste combustion transfers 
75-80 wt% of the burnt matter (Biasenbauer et al., 2020) into a flue gas that is mainly composed of CO2 and 
water vapour but contains several pollutants that are potentially harmful for human health and the 
environment. In Europe, the Industrial Emissions Directive (IED) prescribes stringent emission standards to 
ensure the environmental sustainability of WtE operation.  
The atmospheric emission of acid pollutants, namely hydrogen chloride (HCl), sulphur dioxide (SO2) and 
hydrogen fluoride (HF), is of particular concern (Zhang et al., 2019). Acid gas abatement is frequently 
performed by means of dry treatment systems (DTS). DTS configurations are diverse and highly customized, 
depending on the amount and type of waste burnt, but they all consist in the in-duct injection of solid sorbents 
that remove acid pollutants via gas-solid neutralization reactions (Vehlow, 2015). The injection of sorbents for 
acid gas removal is usually the first pollution control step downstream of the heat recovery section and 
upstream of the de-dusting equipment (electrostatic precipitator of fabric filter) used for the separation of 
particulate matter released by waste combustion. In case a fabric filter is used, the injected sorbents settle on 
the filter bags, forming a reactant cake that acts as a fixed bed for acid gas conversion, hence leading to a 
higher abatement performance (Antonioni et al., 2016; Chisholm and Rochelle, 1999).   
DTS configurations have proved to be reliable and versatile systems, often preferred to wet scrubbing 
alternatives thanks to their low investment cost, ease of operation and absence of “rain-out” issues at stack 
(Margraf, 2015). On the other hand, the understanding of gas-solid reactions at relevant process conditions is 
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still relatively scarce (Foo et al., 2016) and the operation of DTS units is still highly empirical. To ensure safe 
operation, the sorbent is typically injected in high excess. The resulting overproduction of solid process 
residues represents both an extra cost and an environmental burden, as they are typically disposed of in 
landfills, although some valorization routes are currently under study (Dal Pozzo et al., 2018a; Dal Pozzo et 
al., 2019a).   
Simplified operational models have been proposed to describe the relation between sorbent feed rate and 
resulting acid gas removal efficiency of the DTS (Harriott, 1990; Dal Pozzo et al., 2016). These pseudo-
stationary approaches are effective at describing the overall average performance of DTS and particularly 
suitable for process optimisation studies (Dal Pozzo et al., 2020). However, they do not consider the high time 
variability of waste composition (and, thus, raw flue gas composition) and so come short of describing the 
instantaneous behaviour of the DTS in presence of abrupt variations in the operating conditions (e.g. 
temporary peaks of the acid pollutant load entering the system). There is need of models capable of capturing 
such a dynamic behaviour.  
The present study – to the best of the authors’ knowledge – is a first attempt at employing the tools of 
chemometric analysis for the interpretation of acid gas removal process data. Like a chemical process unit, a 
DTS is equipped with instrumentation measuring process variable at high frequencies for monitoring and 
control purposes. These data represent a great deal of information that by means of statistical methods can be 
extracted and employed to study the DTS ruling phenomena and calibrate a statistical model aimed at 
producing reliable instantaneous predictions of system performance.  

2. Modelling approach 
Chemometrics is the application of mathematical and statistical tools on a chemical system in order to 
characterise the mutual relations among the available measures and study the state of the system (Wold et 
al., 2001). This approach is typically applied to on-purpose designed experiments, performed on controlled 
conditions, where high precision data are collected with high reliability. A flue gas treatment system, having 
online measurement of several process variables, is a suitable proving ground for chemometric techniques. 
However, given that process data are not acquired primarily for the chemometric analysis, they must be 
checked and cleaned to comply with specific requirements of type, ordering and quality (Wise and Gallagher, 
1995). Once a preliminary data cleansing is performed, the available dataset can be studied to characterise 
the system.  
Process sensors measure several variables at high frequencies, providing a large amount of data. These data 
might present an amount of correlated and redundant information that, even if relevant for some control 
systems, may not significantly affect the whole process. This can make visual and basic statistical analysis 
ineffective, suggesting more advanced approaches to seek and extract the important information and neglect 
what is not of interest. This so-called data mining procedure can be performed with several techniques, among 
which latent variable techniques (LVs) have been found to be the most simple and relevant for this work.  
LVs are based on the following assumption. If the whole variables dataset is thought as a n multi-dimensional 
space where each measure is represented on a different space dimension, in case that some redundancy or 
correlation among variables exists the actual dimensions of the space on which the process data vary can be 
reduced. LVs are algebraic methods that rearrange such a multidimensional space to find new dimensions 
called latent variables, on which the information is maximized. After determining a proper LVs set, a 
compression of the space dimensions is possible by choosing only the most important latent variables, i.e. the 
ones that retain the largest amount of information. As such, problems of process analysis, monitoring, and 
control are greatly simplified: also highly populated multivariate systems can be reduced. The reduced LVs set 
can then be used to formulate a model that, if correctly validated, can predict with a certain accuracy grade the 
system state. 

2.1 Latent variable methods  

The most common latent variable technique is the principal component analysis (PCA), a method which is 
successfully applied to the analysis and monitoring of batch and continuous chemical processes. 
Mathematically speaking, PCA relies on the eigenvector decomposition of the covariance matrix of the starting 
dataset X consisting of m measures of the n available process variables:  ܿݒ݋(ܺ) = ௑೅	௑௠ିଵ                                                                                                                                                     (1) 

The eigenvectors of the cov(X) matrix are the so-called principal components and are put in descending order 
with regards to the magnitude of the corresponding eigenvalue: the first accounts for the space trajectory with 
the highest variance (i.e. carried information) and each succeeding component in turn, orthogonal to the 
previous, carries the highest remaining variance. PCA is useful for understanding the variance-covariance 
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structure of the original dataset, but is not particularly suited for multivariate regression, as no importance is 
given to how each predictive variable is related to a dependent variable that is selected as outcome of the 
model. To overcome this limit, a different technique, partial least square (PLS) regression, can be used. PLS 
is a regression-aimed LVs technique where the starting dataset is preliminarily divided into two sets of 
predictive (or explanatory) variables, also known as predictors, and predicted (or dependent) variables. Then, 
the dataset space rearrangement is performed on the predictor dataset, not only pursuing the maximisation of 
the information on the new latent variables of the predictors space, but also maximising the correlation of the 
LVs with the predicted variables.  
Formally, if X and Y are the original predictors and predicted variables sets, they can be linearly decomposed 
as: ܺ = ܶ ∙ ்ܲ + ܻ (2)                                                                                                                                   ܧ = ܷ ∙ ்ܳ +  (3)                                                                                                                              ܨ
where matrices T and U are the latent variables space basis, P e Q the loadings (i.e. the weights for each 
original variable projected on the new latent variables) and E and F the residuals. The decomposition is 
performed to maximise covariance between T and U:    ݉ܽݔሾܿݒ݋ଶ(ܶ, ܷ), (ܶ)ݎܽݒ ∗  ሿ                                                                                                                      (4)(ܷ)ݎܽݒ
Once this new "modelling conscious" reference system has been constructed, only a number of the LVs is 
retained, hence performing a reduction of the predictors dataset and removing redundant and unnecessary 
information, condensed inside the residual matrices E and F.  
The retained LVs can then take part finally as features in a linear regression model: ܻ = Θ଴ 	+ Θଵ	 ଵ݂ 	+ Θଶ	 ଶ݂	+	. . . +Θ௡	 ௡݂      (5)           
where f are the model features and ߠ the model weights. Compared to a linear regression performed directly 
on the dataset of the original variables, the regression performed on LVs generally avoids overfitting issues, 
thanks to the dimension reduction of the problem (Faber and Rajko, 2007). At the same time, PLS regression 
produces very simple linear models requiring low computational expense. Moreover, in addition to the system 
state prediction, the model features and parameters can be analysed for an integrative investigation of the 
dataset. Specifically, by the inverse projection of the final PLS weights, resulting from the linear model training 
and validation, on the starting variables set X it is possible to estimate the relative influence of each original 
variable on the system performance.    

3 Case study  
3.1 The reference system  

 

Figure 1: Scheme of the selected DTS with sodium bicarbonate injection.  

A DTS of a WtE plant located in Northern Italy was taken as case study for the application of PLS regression. 
The selected DTS, sketched in Figure 1, is based on the injection of powdered sodium bicarbonate (NaHCO3), 
which is one of the most common reactants adopted for dry acid gas treatment (Dal Pozzo et al., 2019b; 
Tsubouchi et al., 2020). With reference to HCl capture, the overall neutralisation reaction is the following: ܱܰܽܥܪଷ + ݈ܥܪ = ݈ܥܽܰ + ଶܱܪ +            ଶ      (6)ܱܥ
The DTS receives the raw flue gas coming from the combustion chamber. The feed rate of bicarbonate 
injected in the unit is regulated by a feedback loop whose controlled variable is the combined outlet mass flow 
of HCl and SO2. The injected bicarbonate undergoes a mean residence time of 2 s inside a contacting tower 
and then adheres on the filter bags of the downstream fabric filter. Here, bicarbonate continues reacting as 
part of a reactant filter cake until the bags are cleansed by periodic pulse jet cleaning. As such, the system is 
continuous for the gaseous acid pollutants and semi-batch for the solid reactant.  
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3.2 Available measures and choice of dataset  

Table 1 lists the relevant process variables that are continuously measured in the DTS of Fig. 1. FTIR 
spectrometers positioned upstream and downstream of the DTS monitor flue gas composition (concentrations 
of HCl, SO2, H2O, CO2 and O2). Temperature and flow rate of the inlet flue gas are also measured, allowing to 
convert the measured concentrations of gas species into molar flows. In addition, the system registers the 
bicarbonate feed rate and the pressure drop at the fabric filter, which is a proxy measurement of the 
accumulation of solids on the filter bags. The variables in Table 1 are acquired with a frequency of 1/min. In 
the present study, all these variables were used as predictors of system performance. For the bicarbonate 
feed rate, instead of the instantaneous measurement, a cumulated feed rate on a 15-min timespan was 
considered. This approach allowed taking into account the contribution to acid gas removal given by the 
reactant cake accumulated on the fabric filter. 
The outlet molar flow rate of HCl was chosen as estimator of system performance, i.e. the predicted variable Y 
in eq. 5. It should be noted that the PLS method does not have any co-domain restriction, i.e. the outlet molar 
flow rate of HCl can assume any value. A physical constraint was introduced by imposing that the predicted 
value of outlet HCl molar flow rate nHCl,out must lie in the interval [0, nHCl in].  
The considered dataset of measurements covered two weeks of DTS operation. This dataset was divided into 
three subsets, aimed respectively at the training of the model (training set), the determination of its structure 
(cross-validation set) and its final performance validation (validation set). Each subset gives a complete and 
equivalent representation of the system behaviour. 

Table 1: Original variables measured in the DTS and their use as predictors and performance estimators.  

Variable Flue gas 
flow rate 

Flue gas 
T 

nHCl,in 

 
nSO2,in 

 
yCO2,in yH2O,in NaHCO3 

feed rate 
∆P at fabric 

filter 
nHCl,out 

 
U.M. Nm3/h °C kmol/h kmol/h vol% vol% kmol/h mbar kmol/h 

Time resolution 1/min 1/min 1/min 1/min 1/min 1/min 1/min 1/min 1/min 
Predictor          
Performance 
estimator 

         

4 Results and discussion  
Starting from the previously assembled datasets, it was possible to obtain a PLS model that allows: i) a 
characterisation of the influence of the original variables on the system behaviour, and ii) the prediction of 
system performance. By the application of the LVs technique, the initial number of 8 original predictors in 
Table 1 was reduced to a variable space of 3 dimensions, retaining most of their predicting capability. In other 
words, given the existing mutual correlations between the original variables and the minor role of some of 
them in determining system performance, the predictor dataset could be reduced to just 3 latent variables, 
used as final features of the PLS model (see eq. 5).  

  

Figure 2: a) PLS weights referred to the original predictive variables, b) parity plot of HCl conversion.  

Figure 2a shows the final PLS weights of each original variable in the 3-feature PLS model. In addition to the 
bias term, only three variables appear to have a significant influence on the outlet HCl molar flow. A positive 
contribution means that an increase in the predictor translates into an increase of outlet HCl, while a negative 
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contribution is an indicator of an inverse correlation between predictor and outlet HCl. Clearly enough, the 
strong positive contribution of the inlet HCl molar flow, as well as the strong negative contribution of the 
bicarbonate feed rate, are expected given the neutralisation reaction (eq. 6). Less expected is the strong 
negative contribution of the inlet SO2 molar flow, i.e. the fact that a high SO2 load entering the system is 
correlated to a low HCl outlet flow. This effect has to be ascribed indirectly to the control system, which 
increases the amount of injected bicarbonate also when an increase of outlet SO2 is observed, as mentioned 
in section 3.1. Bicarbonate as a sorbent has a higher reactivity towards HCl than SO2 (Dal Pozzo et al., 
2019b), hence the excess feed rate induced by the latter generates a relevant abatement of the former. The 
contributions of the remaining variables are relatively negligible: their dynamic variation is modest and does 
not significantly influence HCl capture. 
The PLS model was obtained from eq. 5 with the PLS weights of Fig. 2a. The verification of its performance in 
predicting DTS behaviour was tested against process data collected in the validation dataset. Fig. 2b shows 
the parity plot of HCl conversion (XHCl). The comparison of model predictions against process data (each dot is 
the average HCl conversion over 20 min) demonstrates a satisfactory performance for HCl conversions > 
98%, while for lower values the model tends to overestimate the real HCl conversion. This can be also seen in 
the time series of outlet HCl molar flow rate shown in Fig. 3a, where the model fits satisfactorily the typical 
range of outlet HCl molar flow rate (0.01-0.06 kmol/h) but fails to predict sudden peaks of HCl breakthrough. 
This phenomenon is likely due to intrinsic inability of a linear model such as PLS to approximate effectively on 
a wide range of HCl loads the non-linear relation between bicarbonate feed and HCl conversion (Dal Pozzo et 
al., 2018b).  

 

Figure 3: time series of outlet HCl molar flow: a) process data vs. PLS model, b) process data vs. PLS model 
and stationary model.  

Nonetheless, to put things into perspective, in Fig. 3b the predictive performance of the PLS model is 
compared to the results obtained by fitting the process data with a stationary operational model. The chosen 
stationary model, proposed in Dal Pozzo et al. (2018c), has the following formulation: ܺு஼௟ = ܴܵ௡ − ܴܴܵܵ௡ − 1 (1 − ܺி) + ܺி (3) 

where SR is the stoichiometric ratio of bicarbonate feed, while n and XF are two fitting parameters accounting 
for the acid gas removal contributions of the reaction tower and the filter cake, respectively. By design, this 
simplified model takes into account the non-linearity of acid gas removal and, once calibrated on the plant 
data, it has been proven capable of providing a satisfactory simulation of average DTS behaviour, more than 
sufficient for process optimisation purposes (Dal Pozzo et al., 2018c). Here, it is shown that, when applied to 
the dynamic simulation of HCl removal at high time resolution (Fig. 3b), this non-linear stationary model is way 
less capable of handling the fluctuations of operating conditions than the linear PLS model. Thus, the 
performance of the PLS model, albeit lacking when the system deviates significantly from normal operation, 
represent a clear improvement compared to stationary model in view of monitoring and control applications.   

4. Conclusion 
The present study explored the potential of a chemometric approach to the modelling of HCl removal in WtE 
plants, an industrial operation characterised by highly fluctuating operating conditions and the possible 
influence of several variables on the instantaneous HCl removal efficiency. Latent variable techniques allowed 
considering the large amount of data made available by the plant instrumentation, while at the same time 
reducing the complexity of the system variable structure. PLS regression proved to be a useful tool for the 
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modelling of the HCl abatement system, coupling the interpretability of the model (i.e. the study of the 
influence of the different variables on the final model outcome) with a decent performance in predicting 
instantaneous HCl conversion.  The PLS approach represents a step forward towards the dynamic modelling 
of such systems if compared to the pseudo-stationary models available in literature. Yet, the inability of the 
PLS model, linear by nature, to reproduce specific non-linear features of the system does not allow the final 
prediction performance to be acceptable for a reliable implementation e.g. in model-based control strategies. 
A necessary follow-up will be the use of more advanced PLS variants that allow introducing non-linearity in the 
model.  
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