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As amply known, ozone concentration in the coastal area of study is well relevant in connection with 
“photochemical smog”, due to high levels of solar radiation and temperature values and possible 
photochemical oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx). In 
this paper, a framework for predicting ozone concentration in urban area is presented, relying a LightGBM 
algorithm for gradient boosting on decision trees. The system represents a pragmatic and scientifically 
credible approach to data driven modelling applied to complex and uncertain situations. The study concerns 
the application of data analytic standard methodologies to air quality analysis, which includes the pre-
treatment of data, the choice of a suitable configuration of the learning algorithm, the identification of the fitting 
parameters and error minimization. Training and verification data are significant statistical time-series over the 
past years validated from the air quality monitoring network in the urban area of Genoa (Italy).  
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1. Introduction 
The protection of air quality from pollution and the reduction of greenhouse gas emissions are essential goals 
gaining increasing attention in international and national strategies and policies. In this context, many 
attributes (such as safety, environment, reputation, policy, costs, etc.) need to be properly taken into 
consideration when prioritising safety plant/industry investments (Abrahamsen et al., 2020). The transition to 
low-carbon economy and the ambition to reach net zero emissions offers research challenges addressing 
pollution prevention, e.g. by advanced pyrolysis processes recovering mass and energy (Chiarioni et al., 
2006). Further to emission reduction process, the enhancement of climate change resilience requires 
advanced pollution modelling forecasting for both emergency situations (Fabiano et al., 2017) and 
conventional environmental risk assessment (Sikorova et al., 2017).  Two different approaches can be sorted 
in air pollution modelling: the former relies on atmospheric dispersion modelling of pollutants by simulating 
diffusive and transport mechanism (e.g. Vairo et al., 2014) and once correctly defined source terms and 
chemical processes involved, can be properly applied also to non-stationary sources (Vairo et al., 2017). The 
latter is based on advanced statistical models, such as machine learning methodologies, e.g. relying on 
statistical data elaboration from air monitoring networks.  

Table 1: Ozone (O3) reference values set down by Italian legislation. 

Reference   Ozone concentration 
Information threshold on the hourly average 180 μg / m3 
Alarm threshold on the hourly average 240 μg / m3 for 3 consecutive hours 
Target value on 8-hour average 120 μg / m3 as daily, not to be exceeded more than 25 times/y 
Long-term target value on 8-hour average 20 μg / m3 as daily average 
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As a matter of fact, analogously to the risk assessment domain, main improvement challenges are based on 
the application of machine learning techniques and big data exploitation (De Rademaeker et al., 2014). In this 
regard, predicting ability is strictly connected to spatial and time interpolation schemes, such as Multiple Linear 
Regression (MLR), or Artificial Neural Network (ANN) for non-linear problems (e.g. Wand & Quian, 2018). Air 
pollution increases the risk of respiratory and heart disease, being recognized as a major environmental and 
health risk. As amply known, tropospheric ozone  is a secondary pollutant, formed as a result of chemical 
reactions occurring in the atmosphere starting from the precursors (nitrogen oxides and volatile organic 
compounds), under high solar radiation level and elevated temperature conditions. Ozone pollution is a well 
relevant and characteristic phenomenon of the summer period, with the highest concentrations usually 
recorded in the afternoon, in suburban areas placed leeward with respect to the main urban areas. The 
forecasting ability of well-developed data driven model can outperform the predictions attained by mechanistic 
models due to inherent approximations and uncertainties in the emission source estimation (Cobourn et al., 
2010). 

Table 2: Exceedances of the target and long-term target values set out by legislation in the year 2018. 

Urban station Target value exceedances [day] Long-term target value exceedances [day] 
Quarto 69 6 
Corso Firenze 52 9 
Parco Acquasola 108 89 

 
The legislative reference values for health protection in the Italian legislation, in terms of non-compliance limits 
are summarized in Table 1. Table 2 summarizes the number of days of the year 2018 exceeding the target 
value and the long-term target value, experimentally obtained by the monitoring network (Regione Liguria, 
2018). The main operational tools for air quality planning are monitoring systems and the regional inventory of 
emissions with indications on the regulatory framework. In order to plan useful actions for achieving 
environmental objectives, it is important to have reliable forecasting tools. The focus of this work is to evaluate 
the results that advanced data analysis techniques (i.e. proper regularization, data pre-treatments) coupled 
with a learning algorithm framework can achieve in reliable forecasting ozone concentrations. Focusing on 
trend forecasting, the remainder of this paper is as follows. Section 2 describes the methodology including 
modelling dataset and learning model, Section 3 presents the data statistics and the forecasting results with 
descriptions of contributions made, while in Section 4 conclusions are drawn, with the strengths of the 
proposed technique and future work. 

2. Methodology 
2.1 Data collection and preprocessing 

In this paper, we consider air quality and meteorological data measured in the urban area of the town of 
Genoa (Italy) over the time span May 2015- December 2018. Raw data were obtained for the three 
metropolitan zones of Genoa (Italy), i.e.: Quarto, Corso Firenze, Parco Acquasola, respectively. Upon 
validation, data have been statistical elaborated on a daily basis. (Garcìa et al. 2011). The following input 
variables has been considered: 

1. Time variables: day of the year (doy), day of the week (dow), month.  
2. Meteorological variables (daily aggregate): mean sea level pressure (MSLP), solar radiation (SLHR, 

SSHR), temperature (TEMP), wind direction and speed (UWIND, VWIND, MOD) humidity (HUM) and 
rain (RAIN). 

3. Pollutants (daily aggregate): ozone (O3) daily mean. 
4. Bank holiday information for each day (true or false) to consider the influence of holidays on ozone 

concentration. 
As suggested by Eapi et al. (2013,) time variables under heading 1 were assimilated via trigonometric 
functions, in order to account for the cyclic nature of their impact. The meteorological variables under heading 
2 have been summarized on a daily frequency utilizing minimum, maximum, average and standard deviation 
functions. Additionally, in order to improve the prediction accuracy when forecasting ozone concentration by 
information correlation, we have added redundant values to each row related to previous time span (e.g. 
meteorological values from one day before or for one year before). 

2.2 Validation strategy 

In accordance to the best practices for time series validation, we have cross validated the obtained results, 
according to a customized and accurate Walk-Forward approach (Cao et al. 2003) as detailed in the following. 
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Figure 1: Validation results based on a Walk-Forward approach A. 
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Figure 2: Validation results based on a Walk-Forward approach B. 

This is an approach that allows achieving a robust estimation of the model performances, without leaking 
information from the training to the validation set shown as a general example in Figure 1. Each fold consists 
of the following sub-sets: 

• Training: contains data points belonging to the time interval from T0 to Tt (included), where T0  is the 
oldest available data point and Tt – T0 is a sufficient time interval to train the model on the problem 

• Validation: contains data points belonging to Tt+1 
• Test: contains data points belonging to Tt+2 
• Unused: contains data points belonging to a time more recent than Tt+2 

Validation data is used to perform early stopping of the learning process to identify when the model starts to 
overfit. When we use a single day to select the validation interval, we have an increased variance due to, 
among other factors, a premature stopping of the training for an initial (random) fitness of the model to the 
small validation data. In order to limit noise in the early stopping process (introduced by random good initial fit 
on such a small validation set) we tested two strategy implementations, as follows. A validation scheme based 
on the selection of 7 days interval for the validation set. As evidenced in Fig. 1, since the model final 
performances are measured on the test set (whose interval is kept one-day long), we can introduce a small 
data leakage between the training and validation, in order to stabilize the validation score and the early 
stopping strategy. B. validation scheme based on running a small number of training epochs without early 
stopping before the full training process. In this case, the resulting trend will evidence a “warm-up” step (see 
Figure 2). 
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2.3 Learning algorithm 

We selected a Light GBM model learning method mainly based on the Decision Tree algorithm, and frequently 
used in classification tasks. (Zhang et al., 2019). Light GBM is based on a highly optimized library that 
performs very well in structured/tabular data problems, capable of gracefully managing a mix of scalar and 
categorical variables (Ke et al., 2017). However, research on Light GBM application for spatial forecasting 
ability in the field of air quality is limited. It is noteworthy, noting that the system used for data assimilation, 
construction and network learning, testing and validation, is completely based on an open source statistical 
processing software. In the next chapter, the application of the validation schemes is thoroughly discussed, in 
order to evidence how the newly built model reflects better fitting effect and predictive data feature.  

3. Results and discussion 
Several run tests were performed according to a wide Walk-Forward window in order to test the model 
convergence and its dependence on the training data dimension. As clearly depicted in Figure 3 a, higher 
folds use a progressively smaller training set: it provides an example of the performances in terms of Mean 
Absolute Error on the validation and test sets across 300 folds. Validation and test data are quite noisy, but 
their average (in the interval Fold 0, Fold i) tends to converge. After nearly 130 folds the model performances 
degrade slowly. The trend is even more evident considering the Validation and Test moving averages (across 
the 20 Folds) for the same experiment depicted in Figure 3 b, evidencing that the model needs to be 
adequately trained with nearly 80%  of the available data to reach top performances. 

 

Figure 1: (a) Model Performance by Fold Id;                     (b) Model Performance by Fold Id - Moving Averages 

 
The variation a in relation with the 7 days-validation strategy above described allowed stabilizing the validation 
score and increasing the test performance, as shown in Figure 4 a. Conversely, the variation B according to 
the validation strategy based on a small training pre-run approach previously outlined, was un-effective in 
stabilizing the validation score but has provided the best overall test performance (see Fig. 4 b). The model is 
sensitive to modelling data size and its performance degrades when data are too few. In order to provide a 
reference point a naïve prediction has been performed using previous-day value as a prediction. 

 

Figure 4: (a) Validation Performance - Variation A;           (b) Validation Performance - Variation B. 
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Table 3: Model scores on validation and testing. 

 Validation mean score Test mean score 
Naïve prediction NA 14.011 
Walk-Forward 6.509 9.456 
A - Walk-Forward 7-day validation 8.593 9.066 
B - Walk-Forward pre run 8.320 8.875 

 
In Table 3, the model performance on validation and testing scores are summarized, by considering the 
different configurations previously outlined. The comparison of Ozone concentrations [ppm] experimentally 
observed (ground truth) and the model prediction is depicted in Figure 5. 

 

Figure 5: Predicted Ozone concentration [ppm] vs experimental values [ppm] (Ground Truth). 

Figure 6 shows the comparison of Ozone concentrations [ppm] experimentally observed (ground truth) to the 
naïve prediction: results reveal that the model yields again satisfactory predictions evidently less clustered 
around the identity line. Because of its predicting ability, this method can not only be used to forecast surface 
ozone concentrations, but also be used to make predictions of other air pollutants, upon proper refinement 

 

Figure 6: Predicted Ozone concentration [ppm] vs experimental values [ppm] (Ground Truth) 
and Naive Prediction. 
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4. Conclusions 
The work presented in this study aims to examine the feasibility of applying a machine learning algorithm 
based on gradient boosting techniques to predict the concentration of O3 in the metropolitan area of the city of 
Genoa. The model is based on a relative novel algorithm used in many different kinds of data mining tasks, 
such as classification, regression and ordering, while its application in the given urban context is still rather 
limited. The predictive model was trained with meteorological data, ozone measurements in three urban 
areas, and time variables, all suitably pretreated as described above. The best cross-validation strategy was 
therefore selected, in order to balance bias and variance in the prediction results and thus avoid situations of 
under-specification and over-specification. The model thus built showed excellent results. This work 
complements and improves the previous predictive model developed for PM10 prediction (Vairo et al. 2019), 
which was developed by a Bayesian inference approach. As a further refinement and extension of the study, it 
seems interesting to extend the framework to cover nitrogen oxides concentration too, in order to develop an 
overall predictive system of the main pollutants relevant for photochemical pollution and their environmental 
synergistic impact. 
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