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In the last decades, many researchers have directed their efforts towards the safety improvement of plants 
where hazardous substances are processed or handled. This attitude has led to developing strategic plans for 
minimizing risk and costs arising from the operations. Accidents related to hazardous substances can indeed 
pose a threat to human beings and the surrounding environment, therefore a reliable tool for engineering 
maintenance is required. This paper presents a comparison of two different Risk-Based Maintenance (RBM) 
approaches for prioritizing maintenance actions. The first approach consists of a classic Quantitative Risk 
Analysis (QRA), where standard probabilities from literature are exploited for the modeling of the different 
scenarios. In this study, the catastrophic rupture and three sizes of leakage have been chosen as reference 
scenarios for each component. The analysis is carried out through a software named Safeti (by Den Norske 
Veritas – German Lloyds DNV-GL), which performs calculations based on standard source, dispersion and 
consequence models. Safeti provides a ranking of the components based on their criticalities. In the second 
technique, Hierarchical Bayesian Network (HBN) is adopted to estimate the probability of failure components, 
while the severity is assessed via Failure, Mode, Effects and Criticality Analysis (FMECA). Subsequently costs 
related to each component are evaluated and a Cost Risk Priority Number (CRPN) is obtained. This 
comprehensive review can help maintenance engineers to reduce risks resulting from operations and pinpoint 
the most critical components, by using the approach that is more suitable for their case. To demonstrate the 
two different approaches and compare their results a Natural Gas Regulating and Metering Station (NGRMS) 
is considered as case of study. The results show that applying the two methods to the same plant gives 
different component rankings, due to their different sensitivities and settings. 

1. Introduction 
Natural gas is deemed as a hazardous substance due to its flammability, indeed leakages or catastrophic 
ruptures of devices processing natural gas can lead to dangerous events such as jet fires, pool fires, fireballs 
or Vapor Cloud Explosions (VCE). Besides, due to the complexity of a natural gas distribution system and its 
vicinity to urban areas, accidents related to the network can generate fatalities and domino effects (Han and 
Weng, 2011). Despite the development of renewable energy sources, the consumption of methane gas is still 
increasing in industrialized countries (Vianello and Maschio, 2014) and the more the network expands, the 
more the society relies on the safety of its operations (P. K. Dey, 2002). Hence comprehensive tools able to 
mitigate the risk arising from natural gas distribution system breakdowns are required to guarantee the safety 
of human beings and environment.  
Planning maintenance and inspection activities are among the most common techniques to avoid failures and 
maximize the equipment availability while minimizing the total cost of the operations (Khan and Haddara, 
2003). An appropriate definition of maintenance is expressed by Dhillon (2002) who identifies maintenance as 
all the activities required to restore the function of an item a part or a component to a given condition. In 
literature, several maintenance strategies are presented (Moubray, 2001), indeed during the past years 
maintenance has been experiencing a drastic change from only time-based methodologies to condition and 
risk-based approaches (Arunraj and Maiti, 2007).  
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Risk-Based Maintenance (RBM) integrates the consequences of failures into the maintenance plan, prioritizing 
the maintenance actions based on the level of risk of each component (Ambühl and Sørensen, 2017). For its 
characteristics, RBM has lured the attention of several researchers during the last decades. To conduct RBM 
many tools have been adopted such as Fault-Tree (Krishnasamy et al., 2005), Failure Mode and Effect 
Analysis (Wang et al., 2012), Fuzzy-logic (Jamshidi et al., 2013) or Bayesian Network (Leoni et al., 2019). 
Bertolini et al. (2009) proposed another RBM approach where expert judgments and appropriate tables for 
severity and occurrence are exploited to identify the most critical items, events and work orders for an oil 
refinery. A significant amount of effort was directed towards developing RBM methodologies for oil and gas 
pipelines. Dynamic Bayesian Network (DBN) and Influence Diagram (ID) were adopted by Arzaghi et al. 
(2017) to model the probabilistic deterioration process due to fatigue crack of a subsea pipeline and then 
schedule the maintenance activities. Other works presented by P. Dey (2001) and Al-Khalil et al. (2005) adopt 
an Analytical Hierarchy Process (AHP) to evaluate the probability of failure of a cross-country pipeline and 
subsequently estimate the costs arising from the failure. Through these approaches, the ranking of the most 
critical failure causes is obtained. 
Although studies have been conducted to improve the safety of Oil & Gas operations, there is still space for 
introducing methodologies able to prioritize maintenance actions based on the level of risk. Besides, Natural 
Gas Regulating and Metering Station (NGRMS), which is a pivotal part of the gas network, is still less 
considered than the pipeline system. To this end, the main objective of this paper is to compare two different 
RBM approaches capable of ranking the components based on their criticality. In the first approach, a QRA is 
implemented via Safeti adopting standard frequencies. For the second technique, the probability analysis is 
conducted via Hierarchical Bayesian Network (HBM), while a Failure Modes and Effects Criticality Analysis 
(FMECA) is adopted to assess the severity of each component. Introducing the failure costs the Cost Risk 
Priority Number (CRPN) is calculated. The advance of such models was verified on an actual example of the 
stochastic process of a Natural Gas Regulating and Metering Stations (NGRMS) near Florence, Italy.  
In Section 2, the methodology utilized in this work has been described, while in Section 3 the results are 
presented. At last in Section 4 the conclusions are discussed. 

2. Methodology 
During this study, two different RBM approaches for prioritizing maintenance actions have been developed 
(Figure 1).  
 

 
Figure 1: Flow charts of the QRA methodology (a) and the HBM methodology (b) 
 

2.1 Quantitative Risk Analysis through Safeti 

Standard source, dispersion and consequence models are exploited by Safeti to conduct the QRA. The 
system is defined and it is broken down into its most relevant components. The geographical location of the 
plant handling a hazardous substance and the plant layout are studied. For each component, four different 
reference scenarios have been selected (the catastrophic rupture and three sizes of leakage), while their 
occurrence frequencies are found in the literature. During this phase, the operating condition of each 
component is also assessed to develop the Event Trees (ET). Simultaneously weather parameters such as 
Pasquill stability, temperature and data about wind are determined, as long as population density around the 
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plant. At last, harm criteria, which are required to estimate the risk of each scenario, are chosen and the 
analysis via Safeti is conducted. Based on the risk integral percentage percentage (i.e. the percentage of the 
total risk associated to a certain component) arising from the calculation the components are ranked. 

2.2 Hierarchical Bayesian Modelling and Cost Risk Priority Number 

During the first phase of this approach, the system involved in the RBM is determined, and its peculiar 
components and their relationships are also identified. Subsequently, data about the number of failures that 
occurred during a certain timespan are collected. Exploiting these data HBM is implemented via a script in 
OpenBugs software. HBM is defined by El-Gheriani et al. (2017) as an advanced probabilistic tool able to 
conduct inference based on real-world observation. HBM performs inference by applying the Bayes’ theorem, 
given by Eq(1).  ߨଵ(ݔ|ߠ) = ௙(௫|ఏ)గబ(ఏ)׬ ௙(௫|ఏ)గబ(ఏ)ௗఏഇ   (1) 

where ߠ represents the unknown parameter of interest, while ݂(ߠ|ݔ) is called the likelihood function. ߨ଴(ߠ) is 
addressed as the prior distribution of ߠ and ߨଵ(ߠ) denoted the posterior distribution of ߠ. As stated by Kelly 
and Smith (2009) the prior distribution for the parameter of interest can be expressed by the Eq(2) : ߨ଴(ߠ) = ׬ ∅߮݀(߮)ଶߨ(߮|ߠ)ଵߨ  for a given value of ߮. The hyper-prior ,ߠ is the first-stage prior of the population variability in (߮|ߠ)ଵߨ (2)                                                                                                                               
distribution is denoted by ߨଶ(߮) and it considers the uncertainty of ߮, which, in most cases, is a vector and its 
components are called hyper-parameters.  
Through HBM the distributions of the probability of failure are estimated for the component of Table 3, then the 
mean values are evaluated for each distribution. The mean probabilities of failure are then used to assign a 
level of occurrence to each component based on Table 1. The severity analysis is conducted using FMECA, 
which is carried out to determine the consequences arising from a failure. Based on the possible outcomes of 
a failure, components are classified into ten categories of severity (Table 2). 

Table 1: Likelihood criteria ranking           Table 2: Severity criteria ranking    

Occurrence (O) Occurrence 
probability 

1 <1 in 30,000 
2 1 in 25,000 
3 1 in 20,000 
4 1 in 10,000 
5 1 in 5,000 
6 1 in 3,000 
7 1 in 2,000 
8 1 in 1,000 
9 1 in 500 
10 1 in 20 
 
 
At last, exploiting expert judgments and useful data, the cost of replacing a piece of certain equipment is 
evaluated and then the CRPN is calculated for each component as showed in Eq. (3): ܴܰܲܥ = ܥ ∗ ܱ ∗ ܵ (3) 

Where C represents the cost of the component replacement, while O and S are respectively integers of 
occurrence and severity obtained by Table 1 and Table 2. 

3. Results and discussion 
To demonstrate the application of the approaches a NGRMS, operating near Florence, Italy, is adopted as a 
case of study. NGRMS has two main tasks: i) reducing the pressure of the gas to adapt it to the subsequent 
devices and ii) measuring the gas flow parameters. Inside an NGRMS there are four major groups and twelve 
major components, listed in Table 3.  

Severity 
(S) 

Severity of effect 

1 No effect 
2 Very minor effect on production 
3 Minor effect on production 
4 Small effect on production, repair not required 
5 Moderate effect on production, repair required 
6 Component performance is degraded 
7 Component is severely affected, NGRMS may not operate
8 Component is inoperable with loss of primary function 
9 Failure involves hazardous outcomes 
10 Failure is hazardous and occurs without warning, NGRMS

operation is suspended 
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3.1 Application of QRA to NGRMS via Safeti 

Safeti is a software that allows to perform QRA for the plant where hazardous substances are handled or 
processed. This software is characterized by a vast field of application such as simulating gas explosion 
(Huang et al., 2017) or studying supercritical fluid extraction (Iovinea et al., 2020). The reference scenarios 
considered for the pressure regulator are illustrated in Table 4, with their relative frequencies that are based 
on expert judgments and several sources (Cox et al., 1990; Spouge, 2005).  

Table 3: NGRMS’ groups and components                   Table 4: Adopted scenarios and their frequencies for 
PR 

Group Component  
Reduction Pressure regulator (PR) 

Pilot 
Filter 

Measuring Pressure and Temperature Gauge (PTG)
Calculator 
Meter 
Remote Control System (RCS) 

Odorization Tetrahydrothiophene (THT) tank 
THT pipeline 

Preheating Boiler 
 Pump 
 Water pipe 
 
At last, the harm criteria are chosen. Four different thermal radiation for jet fire, fireball and pool fire were 
considered: 1.6, 4, 12.5, 37.5 ܹ݇ ݉ଶൗ . Regarding the flash fire, the population inside the Lower Flammability 
Level (LFL) will die with 100% probability due to direct contact with the flames, while people situated in ½ LFL 
will suffer only inhalation effect. Four levels of overpressure were chosen to evaluate the impact of the Vapor 
Cloud Explosion (VCE). The adopted evaluation criteria are reported in Table 5: 

Table 5: Adopted harm criteria for the implementation of the QRA 

Incident outcome Criteria Damage Fatality 
Flash Fire LFL Imminent Death 100% 

1/2LFL Inhalation Effect 0 
Pool fire, fireball, jet fire 1,6 (kW/m2) Safe distance 0 

4 (kW/m2) Second degree burn 1% 
12,5 (kW/m2) Melting of plastic tubing 10% 
366 (kW/m2) Damage to process equipment, death 100% 

VCE 0,0103 bar Glass shatter 0% 
0,02068 bar Safe distance 0% 
0,1379 bar Partial collapse of roof and houses 5% 
0,2068 bar Serious injury, Fatality 100% 

Safeti assesses the risk integral percentage of each scenario, then to estimate the risk integral percentage of 
a certain component, the risk integral of every related scenario is summed. The obtained ranking is showed in 
Table 6: 

Table 6: Ranking obtained via QRA 

Ranking Component Risk integral percentage 
1 Filter 77.57 
2 Pressure Regulator 11.48 
3 THT tank 9.494 
4 THT pipelines 1.451 
5 Water pipe 0 
6 Pump  0 
7 Boiler 0 

With a striking difference in the risk integral percentage, the filter is evaluated as the most critical component. 
On the opposite side, the pre-heating group components are the less critical, indeed they have a null risk 

Component Scenario category Frequency 
[Event/year] 

Pressure 
regulator 

10mm leakage 0.00012 
25mm leakage 1.10E-05 
50mm leakage 1.10E-05 
Catastrophic 
rupture 3.20E-06 
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integral, indeed leakage or catastrophic rupture provokes at most slightly burn. Between the filter and the 
water components, there are Pressure Regulator, THT tank and THT pipe. Accordingly, the most critical group 
is the methane group, indeed its components are respectively the most critical ones, thus its maintenance has 
the priority. The odorization group is the second most critical unit, with THT tank as the component 
characterized by the highest risk integral percentage.  

3.2 Application of CRPN method to NGRMS  

Table 8 lists the number of failures and population numbers, which are the starting data of the last approach. 
These values are obtained by 59 NGRMS and they are referred to a period of 6 years. Through these data, 
the Bayesian analysis is implemented in OpenBugs. The Bayesian inference predicts the posterior probability 
of failure distributions, which mean values are represented in Table 7: 

Table 7: Number of failures, population number and posterior mean probability of failure of NGRMS’ main 
components 

Component Number of failures Population number Posterior mean probability of failure 
Pressure Regulator 17 543,120 0.00003462 
Pilot 6 1,086,240 0.00001291 
Filter 12 271,560 0.00005363 
RCS 19 129,210 0.0001519 
Meter 7 236,520 0.00004226 
PTG 65 129,210 0.0005089 
Calculator 47 129,210 0.0001609 
THT tank 7 129,210 0.00006795 
THT pipelines 3 129,210 0.0000357 
Pump 38 236,520 0.0001694 
Boiler 23 236,520 0.0001067 
Water pipe 25 129,210 0.0002072 

Values listed in Table 7 are exploited to assign to each component a level of occurrence based on Table 1. 
Simultaneously an FMECA is performed to evaluate the severity class of each component following Table 2. 
After introducing the costs obtained by the company, the CRPN is finally calculated as illustrated by Eq (3). 
The outcome of this technique is reported in Table 8. 

Table 8: Ranking obtained via CRPN method 

Ranking Component CRPN Occurrence Severity Cost 
1 THT tank 108 4 9 3 
2 Boiler 75 5 5 3 
3 Pressure Regulator 72 2 9 4 
4 Filter 72 4 9 2 
5 RCS 60 5 6 2 
6 THT pipelines 54 2 9 3 
7 Water pipe 32 8 2 2 
8 Meter 18 3 3 2 
9 Pilot 16 1 8 2 
10 Calculator 15 5 3 1 
11 Pump 15 5 3 1 
12 PTG 12 6 2 1 

The calculation depicted that the most critical component is the THT tank with a CRPN equal to 108, thus its 
maintenance has to be prioritized. On the other side, the less critical component is the PTG which is 
characterized by a CRPN of 12, which comes mostly from the occurrence level (6). 

4. Conclusions 
This work presents a comparative study of two different RBM approaches. These approaches can pinpoint the 
most critical components that maintenance must prioritize. NGRMS was chosen as a case of study to illustrate 
the frameworks and to underline their advantages and limitations. Software developed by DNV-GL is adopted 
for the first approach, where a QRA is performed. Standard frequencies of the hazardous scenarios are 
inserted into the software along with other required data and information. The consequence analysis is then 
conducted and the components are ranked based on their respective risk integral percentage. At last, the 
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occurrence analysis conducted via HBM and the severity analysis performed by FMECA are the main parts of 
the second methodology. In the last part, through a combination of cost, occurrence and severity the CRPN is 
calculated for each component. Due to their different sensitivities, the two approaches provide different 
rankings. For the QRA the filter is addressed as the most critical component, while the components that 
belong to the pre-heating group emerged to be the less critical ones. A striking difference arises if the first 
ranking is compared to the second one, indeed the CRPN method gives priority to the THT tank, followed by 
the boiler which is one of the less critical equipment for the QRA. Further work can be carried out integrating 
these approaches within the ARAMIS methodology which was born as an answer for the SEVESO II directive. 
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