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SQP (sequential quadratic programming) is an effective method to solve nonlinear constraint problems, widely 

used in chemical process simulation optimization. At present, most optimization methods in general chemical 

process simulation software have the problems of slow calculation and poor convergence. To solve these 

problems, an improved SQP optimization method based on positive constraint sets was developed. The new 

optimization method was used in the general chemical process simulation software named optimization 

engineers, adopting the traditional Armijo type step rule, L-BFGS (Limited-Memory BFGS) algorithm and rules 

of positive definite matrix. Compared to the traditional SQP method, the SQP optimization method based on 

positive constraint sets simplifies the constraint number of corresponding subproblems. L-BFGS algorithm and 

rules of positive definite matrix simplify the solution of the second derivative matrix, and reduce the amount of 

storage in the calculation process. The new optimization method saves the computer memory, and makes the 

optimal calculation easier to converge, using precise penalty function and step rule. The example shows that 

the optimization function of optimization engineers based on the improved SQP optimization method can meet 

the needs of chemical process optimization calculation. The iteration times can be reduced by about 10 %, 

and the calculation time can be reduced by 5.3 %. It is suitable for the simulation optimization calculation of 

general chemical process. 

1. Introduction 

The current chemical production scale is getting larger and more and more automated, chemical production 

needs to pursue higher economic efficiency under the conditions of environmental protection and efficient use 

of energy, and there is an urgent need to optimize the calculation of large-scale chemical simulation software. 

Although existing large-scale simulation software, such as Aspen Plus, provides powerful modeling functions 

for chemical process, the purpose of simulation is not to simulate the province, but more importantly to 

analyze and optimize. Aspen Plus uses SQP as the default algorithm for optimization, which is a fast and 

efficient method for solving the Nonlinear programming problem, Biegler applied SQP method to process 

optimization in modular environment, developed infeasible path method (Biegler and Cuthrell, 1985a), feasible 

path method (Biegler and Hughes, 1985b) and hybrid algorithm. 

The traditional SQP method still faces the problem that every step of the quadratic programming subproblem 

must have a solution in the iterative process, because the constraint condition of the subproblem is linear 

approximation of the constraint condition of the original problem, the constraint region may be empty, which 

can not guarantee the correctness of the calculation. Based on the above, Liu et al. (2015) established a 

modular relaxation SQP feasible direction algorithm for solving inequality constrained problems, which 

reduced the problem of sub-incompatibility, Hespanhol and Quirynen (2019) established an SQP algorithm 

based on block-wise quasi-Newton Jacobian updates for nonlinear optimal control, Wang et al. (2019) 

proposed the mode relaxation SQP algorithm with the help of the mode relaxation method and the sequence 

linear equation set, and the numerical calculation is good, but it is difficult to integrate with the chemical 
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process, Yue et al. (2009) introduced the concept of filter-SQP into chemical process optimization under 

modular environment, a step-by-step normalization strategy is proposed to develop a suitable chemical 

optimization system, but each iteration requires updating the filter set, which requires more computation and 

storage space. Johannes et al. (2019) proposed two L-BFGS trust-region methods for large-scale optimization 

with linear equality constraints, these algorithms are more efficient at solving the problem of computer memory 

usage, although the methods are better suited to the linear equation constraint problem. 

In order to solve the problem of sub-problem compatibility of traditional SQP method and the problem of 

excessive computation volume and storage space required for computation of neutron problems, inspired by 

the idea of die relaxation and stepwise specification strategy proposed by other scholars, the Optimization 

Engineer platform of general chemical process simulation and optimization software is programmed using C++ 

code, the SQP method of active constraint set, the traditional Armijo-type step rule and the L-BFGS algorithm 

and stepwise specification strategy applicable to the actual chemical calculation, to develop the optimization 

calculation function applicable to general chemical process. Compared with the previous SQP method, the 

new algorithm is more suitable for chemical simulation calculations and can greatly reduce the calculation time 

while ensuring convergence accuracy. 

2. SQP algorithm based on improved positive constraint sets 

2.1 Preliminary treatment 

The optimization problem of large-scale chemical process is nonlinear, and it is a nonlinear optimization 

problem with equality and inequality constraints: 
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Where u=(u1,...um)∈Rm is a general constrained Lagrange multiplier vector in Eq(1). SQP is a method that 

transforms the nonlinear programming problem into a series of quadratic programming problems. For the 

above problems, the solutions are equivalent to the following quadratic programming problems:  
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Solving the above formula and getting the step size dk. 

2.2 Active set method  

There are active set method (Babonneau and Vial, 2009), dual method (Kudela et al., 2017) and interior point 

method (Yang, 2014) to solve quadratic programming problems. The positive set method considers that the 

non-positive inequality constraint has no effect near the solution, while the active inequality constraint can be 

replaced by the equality constraint because it is zero at the solution (Liu and Ma, 2018), so it is a feasible point 

method, every iteration only needs to solve equality constraint, so the active set method is used to solve 

quadratic programming problem in this software. 

Let  =   + =0 | ( ) ( ) 0k T

k i k i kI i I J g x g x d ,  =  + =0 | ( ) ( ) 0k T

i k i kI i K g x g x d , and = ( )
k

k

k IN N x , Then dk is 

calculated by the followong formula: 



=

− + 
=

                    

    {
0

0 0

0

(|| || ) 0

T
k k k

T k k T
k k k k k

d N N

k d Q d e g N N
d  (4) 

ek is identity matrix, gk=gi(xk+dk
0), i∈Ik.
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2.3 Using L-BFGS to replace Hessian matrix  

For the second derivative matrix used in the solution, the finite difference method is usually used to 

approximate the value of the function corresponding to the discrete values of the variables. The principle is 

that the stationary point is obtained by the Newton method. In essence, the second derivative is obtained by 

using the second order Taylor series: 
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Using Eq(5) to solve the Hessian matrix requires a large number of iterative solutions, which is not only 

complicated but also takes up a large amount of computer memory and is not suitable for computer 

programming, Fletcher (1987) proposed BFGS algorithm for the approximate matrix BK of L (x,u) Hessian 

matrix.In the first step, BK is considered as a unit matrix: 
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The constrained BFGS correction formula of matrix Bk  is: 
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Although the BFGS algorithm iteratively approximates the Hessian matrix, a large number of Bk matrices are 

stored during the computation, usually the Bk matrix being the sparse matrix. The computer memory required 

to store the Bk matrix is about 7 GB, which increases the computation time in 10,000 dimensions, plus the 

overall storage space required for the optimization algorithm. In order to solve the above problems, the L-

BFGS algorithm (Shen et al., 2020) is used to solve the problems of storage and computing speed. Instead of 

storing all the sK and yk matrices separately, the target matrix Bk is calculated by using all the sk and yk 

matrices, and the front sk and yk can be discarded when the target storage is reached, to save computer 

memory and computing time by discarding finite precision. 

2.4 Linear search  

In order to ensure convergence, the search step is usually determined by value function. 
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The penalty parameter σ > 0. And combined with the Armijo criterion, the line search speed and accuracy: β ∈ 

(0,1), σ ∈ (0,0.5), the step size factor km

k =  , km  is the smallest nonnegative integer to achieve the 

following inequality: 
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Combining them,seeking dk, is the following: 
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2.5 Chemical simulation optimization combined with the algorithm 

The algorithm is combined with the optimization of chemical engineering simulation. The calculation steps are 

as follows: 

1) Obtain the object function and constraint function of user input; 

2) The objective function and the constraint function are calculated by using the general chemical process 

simulation and optimization software; 

3) Obtain gradient, given the initial unit matrix BK; 
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4) dk is obtained by solving subproblem Eq(3) with positive set method; 

5) The calculation is converged and the result is output; otherwise, proceed to the next step; 

6) Use ℓ1 value function and Armijo criterion; 

7) Let k: = k + 1 and continue to step 3). 
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Figure 1: Schematic diagram of chemical engineering optimization calculation process 

3. Case study 

3.1 Flashing process optimization 

Figure 2 shows the gas separation unit, it mainly separates the liquefied gas from the catalytic unit into high-

purity propylene, propane and alkylated materials by distillation, and the by-products are ethane and carbon 

tetra liquefied gas. A four-tower conventional separation process is usually used. 
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Figure 2: Schematic diagram of benzene-toluene flash evaporation process 
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In the process, the temperature of Feed is T1 = 35 ℃, the pressure p1 = 1.5 Mpa, feed mass flow F1 = 59,541 

kg/h, the temperature of E101 is T2 = 65 ℃, reflux ratio of C104 is R = 22, flash pressure of D101 is p2 = 2.5 

Mpa, the purpose of the optimization is to maximize the Propane yield f(x) in the C101 tower bottom product 

by adjusting the reflux ratio of C101, the heating temperature of E-1, and the flash evaporation pressure of 

D101. 

From the above description, the following model is constructed: 
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F115——flow of streams 115; 

CC3——Molar fraction of Propane in stream 115; 

3.2 Discussion of results 

In the general chemical process simulation optimization software, the traditional SQP method, the trust region 

SQP method, and the improved active constraint set SQP method are used to optimize the above processes. 

The results are shown in Table 1. 

Table 1: Comparison of the results of the three optimization methods 

 Traditional SQP method Filter-SQP method Improved active constraint set SQP method 

T2/℃ 67.00 66.45 66.53 

F115/kg·h-1 5,722.12 5,723.21 5,723.03 

p2/MPa 2.48 2.49 2.49 

R 26 26 26 

f(x)/ kg·h-1 5,693.51 5,694.59 5,694.41 

Number of iterations 31 30 26 

calculating time/s 109.91 106.67 101.32 

The comparison results show that the three methods can converge and the results are almost the same, 

which shows that the three methods can be used in chemical engineering simulation optimization. Compared 

with the traditional SQP method, the Filter-SQP method can reduce he number of iterations by about 3.23 %, 

and the improved active set SQP method can reduce by about 6.45 %, the Filter-SQP method can save about 

2.95 % computation time, the improved active set SQP method saves about 7.81 % of the computation time, 

and can be roughly viewed by the computer's memory usage. Under the same running conditions, the 

improved active set SQP method has lower memory usage than the former two methods, the main reasons 

are as follows: first, the improved active set SQP method uses the L-BFGS algorithm in machine learning. 

Compared with the BFGS algorithm, although the principle is similar, the L-BFGS algorithm has obvious 

advantages in the matrix storage, secondly, the active set method is a feasible point method, which avoids 

unnecessary computation and iterative search. 

4. Conclusion 

An improved SQP optimization algorithm was developed by combining the active set SQP method with the L-

BFGS algorithm of machine learning, using Armijo's step length law, on a general-purpose chemical process 

simulation software optimization engineer platform, combined with the process simulation function of the 

software. Examples show that the algorithm can reduce the number of iterations by about 5 % and save 7-8 % 

of computation time compared to the traditional SQP method. The algorithm also has some limitations, the 

algorithm implementation is combined with chemical simulation, there is no corresponding development and 

example testing in other fields, the applicability in different fields is not clear. The step size determination in 

the algorithm is relatively traditional and simple, in order to make the algorithm more general and accurate, 

step size search strategies such as arc search with specificity and uniqueness are not adopted, and many 

advanced step size search strategies need to be studied and improved in the future to improve the stability of 

the algorithm and accelerate the convergence of the algorithm. 
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