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Estimation of failure rates provides a key input to quantitative risk assessment (QRA) quantification. 
International functional safety standard such as BS EN 61511 specifies use of realistic and credible failure 
data in failure probability analysis.  In traditional reliability assessment, mean time to failure is one of the most 
common approaches to field failure data analysis. Unfortunately, new technology, such as hydrogen failure 
data is extremely limited. One possible way is to use surrogate failure data from other settings such as 
commercial nuclear power plants, chemical plants, and offshore oil and natural gas platforms. The proposed 
Bayesian framework addresses the requirements by allowing industry knowledge about failure rates to be 
incorporated in a prior gamma distribution and periodic updating process with new survival data as it becomes 
available. Monte Carlo simulation is adopted which make it practical to solve uncertainty in the failure rate 
estimation and update these models with many trials in seconds. The result shows that the process of 
updating failure rate with more samples of new observations and modelling failure data uncertainty using 
Monte Carlo simulation can be effective in improving reliability quantifications in the existing BS EN 61511 
standard. 

1. Introduction 

Probabilistic risk assessment (PRA) has been widely adopted within the process industries to provide 
performance based design of the safety instrumented systems (SIS). PRA gained widespread attention since 
the introduction of the ANSI / ISA S84 (1996) standard. To ensure that the probabilistic calculations in the 
PRA and SIS design are relevant and meaningful, validation of PRA is necessary. The international standard 
for functional safety BS EN 61511 (2016) specifies for using credible, traceable and realistic failure rate data in 
failure probability analysis. However, in reality, these requirements have proven difficult for end-users because 
of the lack of failure data records and large amount of sample data required for frequentist methods. Lack of 
failure data leads to uncertainty in risk and reliability quantifications making risk assessment decisions weak. 
In BS EN 61511 reliability assessment, mean time to failure (MTTF) is one of the most common approaches to 
field failure data analysis.  MTTF and similar metrics are used for situations with a constant failure rate. In 
other words a piece of equipment has the same chance to failure at any point in time i.e. the chance of failing 
at 11th hour and the chance of failing at 110th hour is the same. However, this is generally not true for 
systematic failures encountered in hazardous sites. The most common mechanism of failures in the industry is 
erosion, corrosion, fatigue, cracks etc. When the right conditions exist, corrosion starts, grows and eventually 
over time leads to failures. Mahmoodian (2014) describes the older the equipment the more likely it will fail 
due to corrosion, thus not a constant failure rate. This shows that an overall MTTF may alter the risk 
assessment results. Over the past several decades, enough information has been collected on MTTF from 
several sources to estimate failure rates.  OREDA (2015), one of the largest data source, combines data from 
multiple sources. The OREDA data distribution is very wide and uncertainty intervals span 1 or 2 orders of 
magnitude. One reason for the variability in rates is that these datasets include variations on the environment 
and service conditions. 
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Moreover, new technology or major accident hazards with low probability has limited or no failure data.  Under 
such circumstances, traditional methods are not of much benefit. Even the life data distribution to model the 
time to failure is not of much use because the time to failure data is not available for new systems. Under such 
condition, the users are constrained from using traditional approach to reliability engineering. 
This paper draws conclusions on how failure rates and failure probability can be controlled in practice. The 
proposed Bayesian framework addresses the above requirements by providing a periodic updating process 
that allows industry knowledge about failure rates to be incorporated in a prior distribution and cyclical updated 
with new survival data as it becomes available.  A sensitivity analysis is further carried out to perform 
uncertainty modelling on failure rate using Monte Carlo simulation. The outcome of this work would help to 
predict maintenance intervals. The results can be integrated with predictive and preventive maintenance 
strategies as suggested by Abbassi et al. (2016) whilst maintaining overall system availability and safety.  

2. Literature Review 

In QRA, risks are calculated from likelihood of scenarios and their consequences. Estimation of failure rates 
provides a key input to QRA quantification. Unfortunately, hydrogen failure data is extremely limited. One 
possible way is to collect failure data from other process such as oil and gas or power plants using Oreda 
(2009).  Casamirra et al. (2009) used the fault tree analysis (FTA) to determine frequency of the accident 
scenarios based on generic failure data. Another way is to employ a Bayesian statistical approach to estimate 
failure rate from prior data. LaChance et al. (2009) developed a Bayesian model to estimate leak frequency in 
various components used in a hydrogen refuelling stations.  
QRA methods contain a large amount of uncertainty due to the lack of field failure data. The verification and 
validation of QRA has become a great concern to public acceptance of HRSs. The validity of QRA was 
reviewed by Goerlandt et. al. (2016). Generic validity approaches such as benchmark tests have been 
proposed, but it was pointed out that an evidence-based approach is needed to support the validity of QRA 
results.Pörn (1996) proposed a “two-stage” update of the hierarchical Bayesian process, although the 
procedure format is quite different since it preceded the widespread availability of computerized Bayesian 
algorithms.  Newer methods for treatments of hierarchical Bayes are covered by Droguett et al. (2006).  
Hierarchical Bayesian models may also be viewed as a special case of a Bayesian Belief Networks. Khakzad 
and Reniers (2015) proposed a Bayesian network (BN) methodology to estimate both on-site and off-site risks 
posed by major accidents in chemical plants. 

3. Estimation and interpretation of failure rate using statistical model 

The BS EN 61511 standard recognizes the impact of lack of quality reliability data on the PRA result. 
Justification of failure data is an important measure to provide verification of risk analysis as proposed as 
reviewed by Goerlandt et al. (2016). The standard demands that: 

“Reliability data used in quantifying effect of random failures should be credible, traceable, documented and 
justified based on field feedback” 

BS EN 61508- Part 2 (2010) states that: 
“The reliability data uncertainties shall be taken into account when calculating the target failure measure”. 

There are basically two types of model that can be applied to reliability modelling. Frequentist approach is 
commonly used in reliability calculation but one disadvantage is that they do not consider prior knowledge. 
The Bayesian approach is adopted in this paper to provide more benefits and will be discussed in detail 
hereafter. As each model has a different application, suitable care should be taken to apply the correct model 
to the data. 

3.1 Estimation of failure rate based on Gamma approximation (Bayesian method) 

In reference to the note in Clause 11.9.2 of IEC 61511-1 regarding confidence in reliability data, mean time to 
failure (MTTF) is typically determined by recording the number of failures (n) which occur in a sample of 
components during an accumulated number of operating hours (T). However, the failure data can be 
extremely limited, which in this case, will not be taken into account and can lead to uncertainty in reliability 
modelling. Japan Nuclear Technology Institute (2017) introduced the Bayesian method to enable the 
uncertainty width of failure rate to be updateable with data storing, which until then had a fixed value. The 
nuclear report considers the failure rate as constant over time and the probabilistic variance is updated by new 
data. Similar approach is adopted in this paper for BS EN 61511 application and discussed in detail hereafter. 
Data scarcity and constant failure rate uncertainty problem can be addressed using gamma approximation 
with Bayesian inference to estimate the failure rate. The model presented uses gamma approximation to 
produce prior distribution with uncertainty. The likelihood function (new observation) is modelled using Poisson 
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function. Based on the joint likelihood of Poisson distribution and the parameters of the gamma approximation, 
Bayesian inference is established to analyze survival data.  The sensitivity analysis is then performed on the 
updated failure rate to reduce the uncertainty to as low as possible. 

3.1.1 Prior Distribution 
There are many techniques and considerations to be taken when selecting a prior distribution. For the purpose 
of this paper, the main focus is on feasibility, simplicity and mathematical traceability for engineers. For these 
reasons, a Gamma approximation was chosen as the prior distribution. Prior knowledge will be assigned from 
external industry data sources. The parameters ߙ and	ߚ are estimated using Dutch red book model (1997) as: ߙ = 	 ੨²௏௔௥                                                                                                                                                              (1) ߚ = 	 ੨௏௔௥                                                                                                                                                              (2) 

Where,   ੨ - Positive random variable, ܸܽݎ - Variance of the sample data 

3.1.2 Likelihood (evidences) 
In reality, BS EN 61511 reliability calculations are typically based on the exponential distribution, which is a 
special case (i.e. where ੨	= 0) of the more general Poisson distribution.  The Gamma distribution is a 
“conjugate prior” of the Poisson likelihood function which enables Bayesian equation to be solved analytically 
and elegantly. Given a constant failure rate (ߣ), the Poisson distribution gives the probability of failures (੨) per 
time (t), as shown below. ܲ(੨ਖ਼	, ੤ਖ਼	|ߣ) = ݁ିఒ௧	 (ఒ௧)ೣ௫	! 																																																																																																																																																																										(3) 

In the completed model, the variables x and t will take the place of the evidence ݂	(ܶ₁	|	ߣ) in Eq. (4). The 
survival time and number of failures data will be obtained through new observations from failure records. 

3.1.3 Sampling of Survival Data using Bayesian Inference 
Based on the Bayes' theorem, the relationship between the prior, the posterior, and the likelihood function is 
written as: 

f (ߣ | T₁) = 
௙	(்₁	|	ఒ)	∗	௙₀	(ఒ)׬ ௙	(்₁	|ఒ)	∗	௙₀	(ఒ)ಮబ 		                                                                                                                                 (4) 

Note: T₁ is the first occurrence of failure or survival time. In Eq. (4), ߣ is the unknown parameter of interest 
distributed with posterior f (₁ܶ | ߣ), ݂₀	(ߣ)	is the prior distribution of	ߣ. Subsequently, ݂	(ܶ₁	|	ߣ) is the likelihood 
function that updates a prior distribution. Using the standard equation of Bayesian update from the Dutch Red 
book (1997), the gamma parameter update is given by, ߙᇱ = ߙ + ݊௙,				                                                                                                                                                     (5) ߚᇱ = ߚ + ௦ܶ,		                                                                                                                                                       (6) 

Where, ݊௙	is number of failures and ௦ܶ is survival time.  

The updated mean and variance can be calculated using Maximum Likelihood method (MLE) with the formula: ੨ = 	 ݎܸܽ (7)                                                                                                                                                ′ߚ′ߙ = 	  (8)																																																																																																																																																																																																			′²ߚ′ߙ

Using Eqs. (5), (6), (7) and (8), the posterior distribution mean can be expressed as  

E {f (λ | T₁) =  
 (9)                                                                                                                                                 ′ߚ′ߙ

In other words, ߙ parameter can be converted to number of failures, ߚ can be converted to the total survival 
time. The initial prior parameters are denoted as ₀ߙ	and ₀ߚ. After the first update of these parameters based 
on new observation, the parameters are called	ߙᇱ	and ߚᇱ. 
4. Practical application of proposed model to BS EN 61511 

4.1 Estimating Initial value of Gamma parameters 

The prior value of gamma parameters ₀ߙ and	₀ߚ	should be carefully chosen as they have large impact on 
Bayesian updating process. To make this selection, data for valve failure rates was gathered from a variety of 
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industry data sources such as OREDA (2016). A total of 20 independent dangerous failures for operating 
valves were collected to produce prior distribution and obtain values for , ₀ߙ	₀ߚ. These data are only used as 
informative prior to establish prior distribution. Based on the 20 independent failure data for valves, the mean 
and variance is calculated as: 
Mean (੨) = 0.0335 failures / year, Variance = 0.0015 
Now, the initial values, ₀ߙ and	₀ߚ	are calculated using Eq. (1) and Eq. (2) as ₀ߙ	22.33 = ₀ߚ ,0.75 =. 

4.2 Bayesian Update  

After describing how to calculate Bayesian model in Section 3, we are presenting some examples to illustrate 
the application of this model for case specific scenarios. We have obtained case specific data from the Japan 
Hydrogen and Fuel Cell Demonstration Project – Phase 2 (2011) and Phase 3 (2014). The project analyzed 
17 failures that were observed in the various Hydrogen stations operated from FY2002 to FY2013. 6 out of 17 
failures were related to process valves. The survival time data chosen are for 6 process valves. The data on 
valve failures were further analyzed and reliability related information were extracted for use in this paper. The 
data extracted from the JHFC Phase 2 (2011) project is shown below: 

Table 1: Valve survival data from JHFC report  

ID Component Start Date Failure Date  Survival (days)  Survival (years) KHK - ID 

1 Check Valve 2003/2/7 2010/6/15 T1 = 2685 7.4  2010-135 
2 Suction Valve 2007/8/8 2013/7/30 T2 = 2183 6.0 2013-356 
3 Gate Valve 2003/4/1 2007/10/17 T3 = 1660 4.5 2007-532 
4 Gate Valve 2010/6/16 2013/2/6 T4 = 966 2.6 2013-037 
5 Gate Valve 2012/4/9 2012/10/17 T5 = 191 0.5 2012-314 
6 Check Valve 2013/4/19 2013/5/22 T6 = 33 0.1 2013-115 

The survival data chosen to demonstrate different aspects of updating in chronological order is: 7.4, 6.0, 4.5, 
2.6, 0.5, and 0.1. The six survival time (in years) reported occurs independently and are assumed to follow 
Poisson distribution (Likelihood function). As illustrated in Section 3.2, the Gamma parameters Alpha and beta 
are converted to number of failures and survival time respectively. Bayesian update is performed by 
calculating the parameters of posterior distribution, ߙᇱ and	ߚᇱ. Table 2 also shows the updated	ߙᇱ,	ߚᇱ, posterior 
mean and variance for each component based on Eq. (5) and Eq. (6). 

Table 2: Bayesian update result 

Comp. ID Component Survival  
(in years) 

αᇱ βᇱ Updated 
variance 

Updated failure  
rate ߣ (per hour) 

1 Check Valve 7.4 1.75 29.73 2.26 x10-7 6.72 x10-6 
2 Suction Valve 6.0 1.75 28.33 2.49 x10-7 7.05 x10-6 
3 Gate Valve 4.5 1.75 26.83 2.78 x10-7 7.45 x10-6 
4 Gate Valve 2.6 1.75 24.93 3.21 x10-7 8.01 x10-6 
5 Gate Valve 0.5 1.75 22.83 3.83 x10-7 8.75 x10-6 
6 Check Valve 0.1 1.75 22.43 3.97 x10-7 8.91 x10-6 

From Table 2, it can be noticed that there is no significant difference in the failure rates for all six components. 
All failure rates are within the same order of magnitude.  One of the reason could be the updated failure rate is 
sensitive to generic data uncertainty due to less number of new observation. In order to obtain more realistic 
data, more observations should be analyzed in order to improve the sensitivity of updated failure rate. For this 
reason sensitivity analysis using Monte Carlo is performed. Gate valve has minimum three data cases (see 
Table 2) which is chosen as an example for illustration purpose. In total, three failures occurred at 4.5, 2.6 and 
0.5 years respectively. The new values of	ߙ’, β’ and ߣ is calculated as: 3.75 = ’ߙ            β’ = 29.93         1.43 = ߣ x10-5 

5. Sensitivity analysis on failure probability using Monte Carlo method 

The initial values of ₀ߙ and ₀ߚ can result in uncertainty in the distribution of failure rate due to generic data and 
therefore a Monte Carlo simulation is adopted in this paper for the uncertainty analysis on the failure rate. In 
the field of reliability engineering, BS EN 61511 (Ed.2 2016) commonly uses probability of failure on demand 
(PFD) metric for understanding the performance of safety. The PFD is calculated from the failure rate based 
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on equation in the BS EN 61508 (2010). The uncertainty analysis on 1oo2 valve system for PFD is shown 
below: 

5.1 Failure Probability Modelling for 1oo2 Final elements Configuration (Valve) 

 
Figure 1: 1oo2 Configuration of final element (Gate valve) 

In the process sector industry, the safety function PFD is dominated by the final elements due to relatively 
higher failure rate and architectural constraint. With 1oo2 valve configuration, the PFD is calculated as: 

PFD1oo2 = (1 - ܨܥܥ)	 ఒమ	.		௧೔మ
３

+	஼஼ி	.		ఒ	.		௧೔
２

                                                                                                             (10) 

Where,   ߣ - Failure rate, CCF - Common cause factor (Beta),  .௜ - Inspection interval in hoursݐ
The total failure rate for gate valve is estimated to be 1.43×10-5 failures per hour. The lambda ߣ is assigned 
gamma distribution with Mean: 1.43×10-5, Variance: 4.77×10-7. The inspection interval ݐ௜  is assigned 
triangular distribution with minimum value of 8400, likeliest value of 8760 and maximum value of 9000. The 
inspection period is 8760 hours (annual test). The CCF is assigned uniform distribution with minimum value of 
0.01 and maximum value of 0.04. This means the CCF ranges between 1% and 4%. The failure probability 
calculation computed using Eq. (10) in Monte Carlo simulation after 1000 trials is shown below: 

Table 3: Failure probability on demand calculation 

Parameter Value Distribution Comment 10-5×1.43 ߣ Gamma  Failure rate of dangerous undetected failures (per hour) 
M 1 NA Minimum number of component failures causing system failure 
N 2 NA Number of redundant "channels" of sub function 
CCF 0.02 Uniform Common cause factor ݐ௜ 8760 Triangular Inspection interval in hours 

PFD(1oo2) 2.51×10-3 Output Total failure probability on demand 

 

Figure 2: PFD Uncertainty Analysis using Monte Carlo 

The PFD forecasts using the Monte Carlo simulation is executed for 1000 number of trials for acceptable 
uncertainty analysis on failure rate. The blue area in the graph is the certainty range for the estimated value of 
PFD. The red area is the uncertainty range. Figure 2 shows the PFD certainty range is from 1.00×10-3 to 
1.00×10-2 (SIL 2) based on annual inspection and certainty level of 90%. The base value of PFD for this 
configuration is estimated to be 0.00251. This is equivalent to SIL 2 classification as per BS EN 61511 SIL 
classification. The forecasts of failure probability for different inspection intervals is presented is Table 4. 
The Montel Carlo simulation allows to model failure probability for all possible values of ߣ and ݐ௜ put together in 
the calculation. The final PFD certainty range is estimated to be in SIL 2 range with base value of 0.00251 
based on 1 year inspection interval and 90% certainty level. 
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Table 4: Valve Failure Probability Forecast based on failure rate estimation 

Failure rate,  
λ (per hour) 

Inspection Interval Inspection 
Interval (hours) 

Failure Probability  
on demand 

BS EN 61508 SIL
Class [Achieved] 

 Monthly 720 2.06×10-4 SIL 3 
1.43×10-5 

(Gamma function) 
Quarterly 2160 6.18×10-4 SIL 3 
6 months 4320 1.24×10-3 SIL 2 

 Yearly 8760 2.51×10-3 SIL 2 

6. Conclusion 

The Bayes framework expands on the single-stage model and allows data from available sources to be 
leveraged in the updating process. The Bayesian methodology provides a flexible, coherent framework for 
managing failure rate data for any component. Monte Carlo simulation make it practical to solve uncertainty in 
the failure rate estimation and update these models in seconds. The process of updating failure rate with new 
observations and modelling failure data uncertainty using Monte Carlo simulation will result in lower 
uncertainty and narrower posterior distribution. It is observed that with less number of new observations, the 
updated failure rate is sensitive to generic uncertainty data which does not provide realistic result. In order to 
improve the sensitivity of updated failure rate, more number of observations subject to modelling using Monte 
Carlo method will be beneficial. The final PFD certainty range for 1oo2 gate valve is estimated to be in SIL 2 
range with base value of 0.00251 based on 1 year inspection interval and 90% certainty level. In order to 
achieve failure probability in the range of SIL 3, the inspection interval on valve across installations should be 
carried out at least once in 3-6 months interval. The appropriate base value can be used in design set 
performance standards for availability and reliability in operation and maintenance of the component. 
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