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In this work, the optimal planning for introducing hydrogen technologies in a multi-node smart grid and the 
optimal operation for those hydrogen systems are discussed. In a multi-node grid with Renewable Energy 
Sources (RES), the energy production, storage and consumption might differ significantly from node to node, 
especially if the distances between the nodes are notably long. Consequently, this might lead to considerable 
energy surplus in some locations of the grid and energy deficit in others. In order to overcome these 
undesirable phenomena two tools are developed. The first tool explores the potential of introducing hydrogen 
production systems in each node of the grid separately by taking into account various parameters such as 
energy profiles and economic criteria. The second tool determines the optimal operation scheduling for the 
electrochemical devices (Fuel Cells) that process the produced H2. Indicative results of both tools are 
presented so as to demonstrate the benefits of introducing hydrogen technologies to the grid. 

1. Introduction
Nowadays, the development of multi-node smart grids with renewable energy sources (RES) is on the rise. In 
many cases multiple RES are used and also various energy storage technologies such as batteries, hydrogen 
through photocatalytic water splitting, hydrogen through bio-catalysed electrolysis etc. Utilizing a combination 
of miscellaneous sources can result to the delivery of power in a reliable and efficient way (Hosseinzadeh et 
al., 2013). Therefore, utilizing both batteries and fuel cells in hybrid energy stations (Ziogou et al., 2016) is an 
ordinary case. The objective of the optimal planning is to determine an efficient solution for exploiting the 
energy surplus. Maximizing the hydrogen storage from the unused energy which is produced from the RES, 
yield to multiple benefits. First and foremost, the determination of high hydrogen storage capabilities proves 
the value of installing high-powered Fuel Cells (FC) in nodes where energy deficit is observed frequently. 
Furthermore, high hydrogen storage outcomes the reduction of energy exchange between the nodes. Losses 
during transmission can reach 4% of the generated power (Chen et al., 1977). Thus, minimizing the energy 
exchange between the nodes is of great importance since it decreases the energy losses which are occurred 
during transmission. In addition, installation of high-powered FCs provides the option of disengaging the 
Battery Energy Storage Systems (BESS) of the node for a period of time per day or reducing the 
charging/discharging rates. This can be deemed crucial since heavy workload of a BESS (deep depth of 
discharges and high currents) results to massive damage at the batteries (Galatsopoulos et al., 2018). 
Therefore, by introducing a high-powered FC, the ageing effects at the node’s BESS are decreased.  
Utilization of the stored hydrogen in an efficient way is equally important with the optimal design for 
maximizing hydrogen production and storage. In a grid where the pivotal role for load covering belongs to RES 
and BESS of each node, this implies the capability of using the FCs in an efficient way so as to increase their 
lifetime expectancy. Dynamic Programming (DP) and Model Predictive Control (MPC) (Ziogou et al., 2018) 
strategies can be applied to FCs in order to secure efficient and economic operation.  

  DOI: 10.3303/CET1976181 

Paper Received: 15/04/2019; Revised: 07/05/2019; Accepted: 13/05/2019 
Please cite this article as: Galatsopoulos C., Papadopoulou S., Ziogou C., Trigkas D., Voutetakis  S., 2019, Optimal Planning for Introducing 
Hydrogen Systems in a Multi-node Smart Grid, Chemical Engineering Transactions, 76, 1081-1086  DOI:10.3303/CET1976181 

1081



  
Figure 1: Optimal planning of electrolyzers’ installation 

The purpose of this work is the development of two simulation tools which will provide to the facilities manager 
of a multi-node smart grid the ability of exploring the potentiality of hydrogen technologies introduction to the 
grid. The first tool defines an optimal combination of electrolyzer devices for each node of the grid in order to 
maximize the hydrogen production and storage. The second tool determines the optimal operation scheduling 
for the FCs so as to guarantee high load covering and maintain their lifetime expectancy. 

2. Optimal planning for introducing hydrogen systems  
The optimal design simulation tool (Figure 1) proposes the planning for introducing hydrogen production 
systems to the grid and is implemented by applying a Mixed Integer Linear Programming (MILP) technique. 
The tool has the ability to perform linear optimization in up to five nodes of the grid simultaneously. The 
mandatory input data which must be set to the tool by the end user are: a) the power profile for each one of 
the nodes, b) the available budget for each node, c) the rated power of each electrolyzer’s device and d) the 
corresponding price. By utilizing the aforementioned inputs the optimal design tool defines an optimal 
combination of the available electrolyzer devices for each node in order to guarantee high hydrogen 
production. Moreover, considering the optimal combination of the electrolyzers for each node and the relative 
forecasted profiles, a hydrogen consumption constraint is determined and feedforwarded to the Dynamic 
Programming simulation tool. The objective function of the MILP is stated as: 

( )
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where xi,j symbolizes the number of electrolyzer devices, j the number of the node, EDi,pr the corresponding 
price of each device, EDi the relative rated power ABj the available budget and Emin,j the minimum energy 
which must be exploited for hydrogen production for each node respectively. In addition, the hydrogen 
consumption constraint is calculated by Eq (4) and Eq (5).  

2,max 1 2,

N
Hi i

H n==  for 1,...,i N=                                                    (4) 

2H f c elec en n n I n F=  (5) 

where nH2,i denotes the hydrogen flow rate in mol/s at each time interval of electrolyzer’s operation, nc the 
number of cells, F the Faraday constant, nF the Faraday efficiency, Ielec the electrolyzer’s current and ne the 
number of transferred electrons (ne=2). 

3. Dynamic programming of the fuel cells 
The DP software simulation tool provides the capability of performing multiple simulation tests for the 
operation of Proton Exchange Membrane Fuel Cells (PEM FC) in order to prove their efficiency and lifetime 
expectancy before install them. The tool comprises the DP and the process that depicts its real operation. DP 
consists of the optimizer and the Prediction Model. A non-optimal operation profile is defined and an optimal 
profile is calculated. The non-optimal profile considers a forecasted energy profile and FC specifications. 
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Figure 2: Dynamic Programming of PEM FC 
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The optimal profile provides an optimized operation of the PEM FC by utilizing the aforementioned inputs and 
a desirable lifetime trajectory. The widely used parametric FC model which is used by the tool comprises a 
combination of mechanistic and empirical relations with the I-V characteristic stated as (Amphlett et al., 1995): 

cell act ohmic concV E η η η= − − −  (6) 
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where E, nact, nohmic and nconc represent the thermodynamic voltage, the activation overvoltage, the ohmic 
overvoltage and the concentration overvoltage in V correspondingly, T symbolizes the operating temperature 
in K, PH2 and PO2 the partial pressures of hydrogen and oxygen in atm, ξi the constant parametric coefficients 
which are evaluated by experimental data, i the current density in A/cm2,   denotes the concentration of the 

dissolved oxygen at the gas-liquid interface in mol/cm3, H2,g the hydrogen consumption rate, n the number of 
cells and I the FC’s current. Furthermore, a lifetime prediction model (Chen et al., 2015) is utilized in order to 
define the cost function and the constraints to the optimizer.  

( ) ( )/ 1 1 2 2FC cells on off idling a ratedL V N k c V t U m V t U= Δ ⋅ + + +                                                                           (13) 

Where LFC represents the estimated FC lifetime, ∆V the maximum permissible voltage degradation value, k a 
constant factor, con/off the average start-stop cycles per hour, V1 the voltage degradation rate of each start-stop 
cycle in μV/cycle, tidling the average idling time in min/h, U1 the voltage degradation rate of idling operation in 
μV/min, ma the average mode alternations per hour, V2 the voltage degradation rate of each mode change in 
μV/cycle, trated the average rated power operation time in min/h, U2 the voltage degradation rate of the high 
power load in μV/min. The non-optimal profile is defined simply by comparing the rated current of the PEM FC 
with the quotient of the division of the energy demand and the rated voltage. When the quotient is greater or 
equal to the rated current, the FC is set to operate at rated power. When is lower than the rated current and 
greater or equal to the idling current idling operation is set. Finally, if the quotient is lower than the idling 
current or the hydrogen consumption limit (H2_cons_max) has been overreached the FC shuts down. 
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The dynamic optimization aims to minimize the deviation between the lifetime set point (LFC_sp) and the actual 
lifetime (LFC) of the FC which is estimated by Eq (13). This is achieved by designating optimal maximum limits 
for the FC’s start/stop cycles (con/off), the operating minutes of each mode (tidling, trated) and the alternations 
between the two modes (ma). The objective function is stated as: 
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Where M denotes the total number of past steps of the prediction horizon. The decision variables (con/off, tidling, 
ma, trated) must never exceed the corresponding maximum limits as this will signify that the optimizer proposes 
an infeasible solution. The limits are determined based on the length of the prediction horizon (e.g. if 
horizon=0.5 h and sampling time is 1 min, ma_max=29). The optimal operation is designated according to Eq 
(22). If the needed current is greater or equal to IFC_rated then IFC_opt can be either IFC_rated, IFC_idling or 0 according 
to the values of the limits defined by the DP (trated(k) and tidling(k)). Likewise, if the needed current is lower than 
IFC_rated and greater than IFC_idling then IFC_opt can be either IFC_idling or 0.  
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Where trated_c, tidling_c are relative counters of the past values of trated and tidling. In order to simulate the optimal 
operation of a FC various input parameters must be set to the DP simulation tool. First of all, specifications for 
the FC such as temperature, number of cells, permitted voltage degradation, voltage at rated operation, partial 
pressure of H2, FC model’s (Amphlett et al., 1995) constant parametric coefficients, idling operation current 
and rated operation current. Moreover, the DP needs to retrieve the FC’s lifetime set point, the energy 
consumption profile, the sampling time and the prediction horizon. In the following simulated scenario the 
specifications of the evaluated with experimental data FC model FCS-C3000 are set. The rated power of the 
above-mentioned model is 3,000 W. It comprises 72 cells, generates up to 68.4 V and at maximum power 
produces 43.2 V (which implies IFC_rated = 70 A). The idling current is set to 10 A. Furthermore, the FC 
operating temperature is 45oC, the partial pressure of hydrogen is 0.5 bar and the permitted FC voltage 
degradation 25 V (0.3472 V per cell). In addition, the constant parametric coefficients are displayed in table 1. 
The prediction horizon is set to 30 min, sampling time to 1 min and the lifetime trajectory to 2,500 h. 

Table 1:  PEM FC’s constant parametric coefficients 

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 
29.12 -2.886 5.84*10-5 -0.18 0.507 -0.0016 1.87*10-5 2.45*10-5 0.112 

4. Simulation Results and Discussion 
4.1 Optimal design simulation tool 
Primarily, the optimal design simulation tool is tested so as to define the planning of the electrolyzers’ 
installation to specific nodes of the grid. Thereafter, the hydrogen consumption limit is calculated and 
feedforwarded to the DP tool. The power excess profiles and the relative available budgets for five nodes of 
the grid (node 1: 550 k€, node 2: 450 k€, node 3: 650 k€, node 4: 500 k€ and node 5: 550 k€) are provided to 
the optimal design simulation tool. Moreover, the rated power and the corresponding price for each 
electrolyzer are set (electrolyzer 1: 1 kW, 10 k€, electrolyzer 2: 2 kW, 18 k€, electrolyzer 3: 5 kW, 45 k€ and 
electrolyzer 4: 10 kW, 79 k€). Last but not least, the end user sets the minimum amount of energy surplus 
which must be exploited by the optimal combination of electrolyzers at each node. Thereupon, the MILP 
determines the optimal solution for each one of the five nodes (Figure 3).  

 

Figure 3: MILP output 
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Once the MILP defines the optimal solution for the electrolyzers’ installation, the end user has the option to 
calculate the maximum amount of hydrogen to be produced at each location for specific periods of time by 
applying to the tool various expected energy profiles. The average produced hydrogen of all the simulated 
scenarios is feedforwarded to the DP tool to be used as a hydrogen consumption limit. Nevertheless, the end 
user has the option to set manually the limit to the DP. 

4.2 Dynamic programming simulation tool 
In the dynamic programming tool, except of the hydrogen consumption limit a forecasted power demand 
profile (Figure 4a) is considered. In addition, in Figure 4b the relative needed operating currents for the PEM 
FC in order to cover the whole power demand are displayed. By utilizing Eq (15) the non-optimal predictive 
operation schedule is defined at each step of the prediction horizon. At the end of the horizon Figure 6 is 
obtained by process simulation and displays the actual non-optimal operation schedule. It is observed that FC 

  

 Figure 4a: Forecasted power demand profile Figure 4b: corresponding currents                                             

operates for 8 min in rated mode and for 11 min in idling mode. Additionally, the alternations between idling 
and rated operation are 8 and the switch on/off cycles 4. By utilizing the optimizer, the DP decision variables 
are redefined at each step of the horizon (Figure 6) by taking into account updates at the forecasted energy 
profile. The decision variables represent optimal maximum limits of con/off, tidling, ma and trated for the whole 
prediction horizon. The process simulation defines the operation of the PEM FC at the present step, keeps a 
record of past values and feeds these values to the DP. At the end of the horizon the optimal operation of the  

 

Figure 5: Non-optimal and optimal operation of the PEM FC 

 

Figure 6: a) optimal max limits, b) actual values, c) DP output  

(a) (b) 

(c) 
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Figure 7: PEM FC losses for non-optimal (left) and optimal operation (right) 

FC is obtained (Figure 5). It is observed that FC operates for 2 min in rated mode and for 10 min in idling 
mode. Furthermore, the mode alterations are 2 and the switch on/off cycles as well. Comparing the two 
operation profiles it is noted that the optimizer replaced 3 minutes of rated operation with idling operation and 
switched off the FC at step 22 until the end of the horizon so as to reduce the degradation effects. The 
achieved lifetime (2,213 h) is slightly lower than the desired one (2,500 h) and significantly higher than the 
estimated one during the non-optimal operation (1,381 h). Lastly, the DP simulation tool calculates and 
displays (Figure 7) the voltage losses for both optimal and non-optimal operation schedule of the FC. 

5. Conclusions 
Introducing different types of energy storage in a multi-node grid is a quite appealing solution for improving 
grid’s efficiency. This is due to the ability of exploiting the advantages of each type of energy storage. In this 
work, optimization methodologies are presented in order to facilitate the decision of importing hydrogen 
technologies to a grid. Initially, a MILP based methodology is presented so as to define the optimal planning 
for installation of hydrogen production systems in multiple nodes based on various technical and economic 
criteria. Afterwards, a DP methodology is presented in order to demonstrate the optimal operation of PEM FCs 
in the grid based on day-ahead energy demand profiles, on available amount of hydrogen for consumption 
and on degradation constraints. The simulation results prove the capability of the MILP technique to provide 
an optimal planning for future installation of electrolyzers in specific nodes of the grid with respect to the 
criteria set by the end user. Similarly, it is concluded that the DP manages to define an optimal predictive 
operation schedule for the PEM FC according to the specifications and constraints set. More specifically, it is 
achieved to increase the lifetime expectancy of the FC by 832 h.  Summing up, the demonstration of the 
aforementioned optimization methodologies proves their utility by providing valuable conclusions to the end 
user regarding the possible future introduction of hydrogen technologies in a grid so as to reduce the energy 
exchange between the nodes and the operating hours of the already installed BESSs.   
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