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Continuous Stirred-Tank Reactors (CSTR) belong to basic technological equipment frequently used in the the 

production of various types of chemicals. These systems are quite complex with many nonlinearities. So, the 

conventional linear control with fixed parameters can be questionable or unacceptable. The solution should be 

found in so-called “non-traditional” control approaches like Adaptive, Robust, Fuzzy or Artificial Intelligent 

methods. One way is the utilization of selftuning adaptive schemes but computations are quite difficult, clumsy 

and time-consuming. This paper brings an alternative principle called robust approach. This approach considers 

a linear system with parametric uncertainty which covers a family of all feasible plants. Then a controller with fix 

parameters is designed so that for all possible plants the acceptable control behavior is obtained. The two 

degree of freedom (2DOF) structure for the control law was chosen. All calculation and simulations of 

mathematical models and control responses was performed in the Matlab and Simulink environment.  

1. Introduction 

The plants in technological processes and especially in chemical and biochemical industry usually have 

nonlinear behavior that causes difficulties in the control of such processes. The negative property of nonlinearity 

can be overcome with the linearization of nonlinear models. On the other hand, this simplification could result 

in an inaccurate description of the system. The utilization of adaptive (e.g. selftuning) schemes brings more 

difficult, clumsy and time-consuming computations (Åström and Wittenmark, 2008). The control design using a 

hybrid adaptive control principle was used in Vojtesek et al. (2017) where the originally nonlinear system was 

represented by the external linear model with recursively identified parameters and the pole-placement method 

adjustment principle was applied. A practically favored approach to overcome the loss of the model accuracy, 

compensated by its structure simplicity, consists in the utilization of a model with uncertainty. There are more 

ways of incorporating the uncertainty into the mathematical model available, see Barmish (1994), Bhattacharyya 

(2017). The popular group of uncertain systems is known as the systems with parametric uncertainty, which 

means the model structure is fixed but its parameters can vary, typically within some prescribed intervals. Then, 

the natural task is to find a controller, called a robust controller, that ensures the preserving some important 

closed-loop properties (e.g. stability) for the whole assumed family of controlled plants, see Grimble (2006). 

The main aim of this paper is in the design a robustly stabilizing controller for the CSTR with the cooling in the 

jacket, modelled as a system with parametric uncertainty, by means of algebraic approach.  

The paper is organized as follows. In Section 3 a mathematical model of CSTR is described. Then Section 3 

outlines principles of uncertainty, robust control and control design in RPS. Section 4 is devoted to simulation 

example and discussion of results. Finally, section 5 offers some concluding remarks. 
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2. Continuous Stirred Tank Reactor 

The controlled system is a CSTR which is schematically displayed in Figure 1. The reaction inside the reactor 

is called van der Vusse reaction and can be described by the following scheme: 
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The mathematical description of the process is quite complex and there must be introduced some simplifications. 

Suppose that the reactant is perfectly mixed, all densities, heat capacities and transfer coefficients are constant 

throughout the reaction. In fact, they are not constant but they usually vary only in a small range and this variation 

can be neglected. 

  

 

Figure 1: Continuous stirred tank reactor with cooling in the jacket. 

Under these assumptions, the mathematical model can introduced by four material and heat balances inside 

the reactor (see e.g. Russell and Denn, 1972 or Vojtesek et al. 2017): 

( )

( ) ( )

( )( )

2

0 1 3

1 2

0

1
, 0 , 0

A r

A A A A

r

B r
B A B

r

r r r r

r r c r

r r pr r r pr

c

c r r c A B

c pc

dc q
c c k c k c

dt V

dc q
c k c k c

dt V

dT q h A U
T T T T

dt V c V c

dT
Q A U T T where c c

dt m c

 

= − − −

= − + −

= − − + −

= + −  

 (2) 

This mathematical model of the reactor belongs to the class of lumped-parameter nonlinear systems, see e.g. 

Ingham et al. (2000) because it is described by a set of ODE. Nonlinearity can be found in reaction rates (kj), 

which are described via the Arrhenius law: 

 ( ) 0 exp , for 1,2,3
j

j r j

r

E
k T k j
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 
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where k0 represent pre-exponential factors and E are activation energies.  

The reaction heat (hr) in Eq. (2) is expressed as: 

 2

1 1 2 2 3 3r A B Ah h k c h k c h k c=   +   +    (4) 
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where hi means reaction enthalpies. 

The initial conditions for the set of ODE (2) are ( ) ( ) ( ) ( )0 , 0 , 0 , 0s s s s

A A B B r r c cc c c c T T T T= = = =  (5) 

Parameters of CSTR and more details can be found in Vojtesek et al. (2017). 

3. Robust Control 

3.1 Models with Parametric Uncertainty 

Systems with parametric uncertainty represent effective and popular way of considering the uncertainty in the 

mathematical model of a real plant, see e.g. Barmish (1994) or Matušů and Prokop (2013, 2014). The utilization 

of such models supposes known structure (and order) of the transfer function but not precise knowledge of real 

parameters, which can be bounded by intervals with minimal and maximal possible values. They can be 

described by a transfer function: 

 

( , )
( , )

( , )

b s q
G s q

a s q
=  (6) 

 

where ( , )b s q  and ( , )a s q  denote polynomials in s (Laplace transform)with coefficients depending on q, which 

is a vector of real uncertain parameters. Typically, this vector is confined by some uncertainty bounding set 

which is generally a ball in some appropriate norm. The combination of the uncertain system (e.g. transfer 

function (6)) with an uncertainty bounding set gives so-called family of systems, see e.g. Barmish (1994). A 

special and frequent case of system with parametric uncertainty is interval plants. Its parameters can vary 

independently on each other within given bounds, i.e.: ; , ;i i i i i ia a a b b b− + − +        ,where , , ,i i i ib b a a− + − +
 

represent lower and upper limits for parameters of numerator and denominator, respectively. 

 

3.2 Control Structure and Design  

The 2DOF closed-loop control system with separated feedback and feedforward parts of the controller is well 

known, see Kučera (1993), Prokop and Corriou (1997) and the control law is governed by: 

  

( ) ( ) ( ) ( ) ( ) ( )P s U s R s W s Q s Y s= −     (7) 

 

The transfer functions ( )G s =B(s)/A(s), ( ) ( ) / ( )bC s Q s P s= , and ( ) ( ) / ( )fC s R s Q s=  represent controlled 

plant, feedback part of the controller, and feedforward part of the controller, respectively and the signals w(s), 

n(s), and v(s) are reference, load disturbance, and disturbance signal. The traditional (one degree of freedom) 

feedback system is obtained by R=Q. However, there are many relevant evidence that the feedforward part 

brings positive improvements in control responses, see e.g. Gorez, (2003) or Matušů and Prokop (2013, 2014). 

The control synthesis itself is based on the algebraic ideas of Vidyasagar (1985), and Kučera (1993). 

Subsequently, the specific tuning rules has been developed and analyzed e.g. in and Prokop and Corriou (1997) 

or Matušů and Prokop (2013). Besides, the controller tuning rules for the case of law order controlled plant 

under assumption of either purely reference tracking problem or reference tracking and load disturbance 

rejection together have been already studied e.g. Kučera, (1993) or Matušů and Prokop (2013). The control 

design technique supposes the description of linear systems by means of the ring of proper and stable rational 

functions (RPS). The conversion from the ring of polynomials to RPS can be performed very simply (see e.g. 

Vidyasagar, 1985 or Prokop and Corriou, 1997) according to: 
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The parameter 0m   will be later used as a controller-tuning knob. The value of the tuning knob has relevant 

influence on the control behavior of control responses. The algebraic analysis, see e.g. Prokop and Corriou, 

(1997) or Matušů and Prokop (2013, 2014) leads to the first Diophantine equation: 

 

( ) ( ) ( ) ( ) 1A s P s B s Q s+ =     (9) 
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with a general solution 
0( ) ( ) ( ) ( )P s P s B s T s= + , 

0( ) ( ) ( ) ( )Q s Q s A s T s= − , where T(s) is an arbitrary member 

of (the ring) RPS and the pair 
0 ( )P s , 

0 ( )Q s  represents any particular solution of (9). This principle is known as 

Youla – Kučera parameterization of all stabilizing controllers. Thus, all possible solutions of the Diophantine 

equation give all stabilizing feedback controllers. Since the feedback part of the controller is responsible not only 

for stabilization but also for disturbance rejection, the convenient controller from the set of all stabilizing ones 

can be chosen on the basis of divisibility conditions. The requirement of the reference tracking is obtained by 

the second Diophantine equation (Fw is the reference denominator), see e.g.Kučera (1993):  
 

( ) ( ) ( ) ( ) 1wF s Z s B s R s+ =    (10) 

 

3.3 Robust Stability 

Stability of the feedback loop is the crucial requirement in all control applications. Naturally, the feedback loop 

can be stable when the controlled and/or control plant is unstable. In the case of uncertainty of controlled plants, 

robust stability means that not only one fixed closed-loop system is stable but also whole family of closed-loop 

control systems is ensured to be stable. Since the stability of linear systems can be investigated by means of 

stability of its characteristic polynomials, the main object of interest from the robust stability viewpoint is the 

uncertain continuous-time closed-loop characteristic polynomial p(s,q)= I(q) si. Details can be found in e.g. 

Ackermann (1993) or Bhattacharyya (2017). 

However, there is a very universal graphical approach applicable for all, even in complicated cases. It is known 

as the value set concept in combination with the zero exclusion condition see e.g. Barmish (1994) or Matušů and 

Prokop (2011). In other words, ( , )p j Q  is the image of Q under ( , )p j  . Practical construction of the value 

sets then means to substitute s for j , fix   and let the vector of uncertain parameters q range over the set 

Q. The zero exclusion condition for Hurwitz stability of family of continuous-time polynomials says see e.g. 

Barmish, (1994):  Assume invariant degree of polynomials in the family, pathwise connected uncertainty 

bounding set Q, continuous coefficient functions ( )i q  for 0,1, 2, ,i n=  and at least one stable member 

0( , )p s q . Then the family P is robustly stable if and only if the complex plane origin is excluded from the value 

set ( , )p j Q  at all frequencies 0  , that is P is robustly stable if and only if  

0 ( , ) 0p j Q     (11) 

 

4. Simulations and discussion 

4.1 Simulation example and results 

The CSTR was identified in Vojtěšek et al., (2017) as a second order system with the transfer function: 
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with nominal parameters: a2 = 1, a1 = 1.4550, a0 = 0.3072, b1 = -0.0037, b0 = -0.0095. The intervals for uncertain 

perturbations were obtained by deeper analysis of the dynamic behaviour and they result in the following ones: 

 

a2 = [0.8; 1.2],   a1 = [1.164; 1.746],   a0 = [0.24576; 0.36864],  

b1 = [-0.00296; -0.00444],     b0 = [-0.0076; -0.0114]  (13) 

 

The first 2DOF controller has been designed for the nominal plant and the tuning parameter m = 0.8. The 

feedback and feedforward parts of the controller: 
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The second 2DOF controller was generated by tuning parameter m = 1.2 in the form: 
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Figure 2 shows the output controlled variables for both tuning parameters. The red lines depict the nominal plant 

responses and black shadows are responses for the whole uncertain family (13). The load disturbance n = 50 

was injected in the time t = 40 and it is evident that no permanent error is observed. 

 

 

Figure 2: Set of output controlled variables for m=0.8 (left) and m=1.2 (right) 

4.2  Analysis and Discussion  

Simulation results proved that the fix robust controller can be designed for a wide family of interval systems. 

The results are shown in Figure 2 for two values of the tuning parameter m > 0. The choice of the tuning 

parameter m > 0 was found empirically and experimentally. Until now, there is no exact theory how to obtain the 

optimal value (see e.g. Prokop and Corriou, 1997). In order to verify the practical usability of both designed 

controllers, they were applied not only to the linearized model, but also to the original nonlinear model of CSTR. 

The control results for this nonlinear case are shown and mutually compared in Figure 4. The red line 

corresponds to the value m=0.8, while the blue line represents the value m=1.2. All simulations confirm that 

lower values of the parameter m give slower responses of the control behaviour. The price for the faster 

response is the more aggressive (higher) control inputs. Figure 3 shows the zoomed value sets for the family of 

closed-loop characteristic polynomials with the affine linear uncertainty structure. It demonstrates the robust 

stability of both designed control systems. 

 

  

Figure 3: Zoomed value sets for m=0.8 (left) and m=1.2 (right) 
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Figure 4: Control of the original nonlinear model for both values of m – comparison of the output controlled 

variables (upper) and the input control variables (bottom) 

5. Conclusions 

The paper has been focused on application of continuous-time 2DOF robust control algorithms designed in RPS 

to systems with parametric uncertainty. The synthesis method itself is accompanied by the graphical approach 

to robust stability analysis based on the value set concept and the zero exclusion condition. As an application, 

two designed controllers were applied to control of nonlinear Continuous Stirred Tank Reactor. 
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