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This paper considers the robust identification of Hammerstein-Wiener systems in the presence of Gaussian or 

non-Gaussian noises. An improved intelligent identification scheme is exploited by combining particle swarm 

optimization (PSO) and K-means clustering. The proposed scheme has strong ability to keep the balance 

between exploration and exploitation. Its procedure is about “global particle swarm optimization search — K-

means clustering — local particle swarm optimization search”. The proposed scheme can identify the 

parameters of the general Hammerstein-Wiener system with dead zone and saturation characteristics, and 

obtain a more accurate model for the actual production process. Relative to other improved particle swarm 

optimization methods, the accuracy of parameter estimation is improved by nearly 53 % at data length L=2000. 

In particular, the method can better model nonlinear dynamics and facilitate the precise implementation of 

control in chemical production. 

1. Introduction 

Nonlinear systems widely exist in industrial processes. In order to achieve accurate modelling for nonlinear 

systems, the block-oriented nonlinear models that separate system statics and dynamics are employed (Cao 

and Luo, 2014). A Hammerstein-Wiener model (Figure 1) can give good descriptions of the nonlinearities of 

both actuators and sensors. The identification of Hammerstein-Wiener models with polynomial or dead-zone 

(Wang et al., 2017) can be found in the literature. Hammerstein-Wiener models can describe some processes 

completely and explicitly. e.g., the ionospheric dynamic process and the polymerase chain reaction process. 

The key of accurate modelling of block-oriented nonlinear systems is to obtain global optimal parameter 

estimations under known and complex structures (Schoukens and Tiels, 2017). Based on measurement data of 

systems, lots of techniques have been developed for nonlinear parameter estimation. These include iterative 

methods (Behl et al., 2019), subspace-based techniques. In recent contributions, the conclusive prediction error 

(PE) framework is adopted to solve the identification of general Hammerstein-Wiener models (Rasouli et al., 

2015), and the maximum likelihood (ML) framework is employed to further allow for a disturbance before the 

final Wiener nonlinearity (Wills et al., 2013). In pre-existing literature, the Gaussian-based colored or white noise 

assumptions are necessary. In engineering areas, the measurement distributions are non-Gaussian because 

they contain outliers. Since the swarm intelligence belongs to the nature-inspired optimization framework 

(Gotmare et al., 2015), its relevant techniques have powerful global search abilities that can be applied into the 

identification of block-oriented nonlinear systems under Gaussian or non-Gaussian noises. The nature-inspired 

optimization can make up for the weaknesses of PE and ML effectively. Compared with the simple PSO, this 

paper uses an adaptive inertia weight (Maleki et al., 2015) for PSO and the K-means clustering (Tang et al., 

2017) to avoid the search being trapped in local optima. The whole intelligent scheme is about “global PSO 

search — K-means clustering — local PSO search”. Meanwhile, through the appropriate algorithmic settings, a 

good balance between exploration and exploitation can be harvested, and the global optimal solution can be 

found. 

The identification results by the proposed scheme are compared with the results obtained by the CPSO (Chen 

et al., 2015) and NPSO (Jin et al., 2013) intelligent search algorithms. The proposed scheme can estimate more 
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accurate parameters to improve the quality of modelling. This is a follow-up to better predict, control, fault 

diagnosis to lay the foundation. Applying the scheme can increase production efficiency, save energy and 

reduce pollution. 

2. Problem formulation 

2.1 Description of model structure 

Consider the nonlinear dynamic Hammerstein-Wiener system shown in Figure 1, where ut and yt are input and 

output respectively, et is zero-mean stationary stochastic noise, and vt and xt represent internal variables. Note 

that the distribution of et can be either Gaussian or non-Gaussian. From Figure 1, the Hammerstein-Wiener 

system is formed by a linear block z−1( )G  and two memoryless nonlinearities H W{f , f } . Among them, the linear 

block z−1( )G  is depicted by a discrete transfer function: 
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where m and n are model orders. The memoryless nonlinearities ( , )Hf   and ( , )Wf   are quite general, and 

the only restriction is that the derivatives 
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 with respect to their parameter vectors   

and   exist. Thus, the system model in the presence of stochastic noise is expressed as: 
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Figure 1: The Hammerstein-Wiener model structure 

Let  T  = 1, , n  and  T  = 1, , m . From Eq(1) to Eq(4), it is easy to see that the system structure is 

parameterized by the parameter vector 
T

T T T T =  , , ,     . Since the internal variables vt and xt are 

unavailable, the objective of the paper is to exploit an improved intelligent identification scheme to obtain the 

parameter vector  . 

2.2 Description of nonlinear blocks 

In order to give the reasonable descriptions of memoryless nonlinear blocks ( , )Hf   and ( , )Wf   that satisfy 

the condition of derivative existence, we discuss following fundamental cases:  

The common nonlinear blocks contain saturation nonlinearity, dead-zone nonlinearity and piecewise linearities. 

Referring to the work in (Wills et al., 2013), the piecewise linear modeling method is adopted for the description 

of non-smooth nonlinearities. Assuming that the nonlinearity ( , )Hf 
 
is non-smooth, it can be described by an 

initial linear term together with a number lk of “hinge” functions ( , )kh  : 
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Here, the parameter vector   is shown as: 

T

l l
      =  0,0 0,1 1,0 1,1 ,0 ,1, , , , , ,

k k


 
(7) 

It is shown that Eq(5) to Eq(7) are used for the description of non-smooth nonlinearities. For example, a dead-

zone or a saturation can be described by a linear base together with two hinges. That is, kl  is equal to 2, and 

the vector 
T  contains a number of six parameters. 

3. Improved intelligent identification scheme 

3.1 Cluster analysis for elite swarm 

In this section, the nonlinear identification problem is framed as swarm intelligence-based optimization problem. 

Specifically, the positions of particles in PSO algorithm correspond to possible parameter estimation vectors of 

Hammerstein-Wiener systems. The following mean-squared-error (MSE) index is derived as the fitness function 

of PSO search: 

( ) ( )k k
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where L is the number of measurement samples, and estimated output kˆ ( )ty  is obtained by estimated model. 

The smaller the fitness values are, the better the search quality is. It should be noted that the estimated model 

is formed by the identification result of model parameters. According to the fitness function, the top N/5 particles 

are reserved as candidate solutions. For K-means, determine the suitable value of cluster number ks according 

to the silhouette coefficient (Jia and Deng, 2018) and divide candidate solutions into ks categories. Next, Define 
T

r r r =  
( ) ( ) ( )

1 , ,i i idE e e  as the I-th particle in the r-th cluster, and Nr as the number of elite particles in the r-th 

cluster (i.e. + + =1 5
skN N N ). According to different clusters, establish boundaries for multiple local search 

spaces: 
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where 
r( )

minE  and 
r( )

maxE  are the lower and upper bounds in the r-th local search space. Finally, for the exploitation 

of the promising local spaces, randomly generate N/10 new particles within each local space. 

Because the parameter search space is large (Nezamivand Chegini et al., 2018), the lack of prior knowledge of 

model parameters restricts the search quality and identification accuracy. In view of the above situation, the elite 

swarm is taken for analysis instead of the best particle.  

From the above procedure of cluster analysis, since the relevant minimum and maximum values are extracted 

for the j-th part of particle boundary, the Eq(9) is able to ensure the relatively large local search boundaries. 

There may exist some overlaps between the local search spaces. The focus of the problem is to ensure the 

population diversity in the top N/5 particles. The effective approach to solve the problem involves two aspects: 

(a) the parameter search space for global PSO should be set large ensures the diversity of population and 

contributes to the global search of whole space; (b) set the iteration number of global PSO to a relatively small 

number. This is because the smaller the iteration number is, the bigger the particle differences are. However, if 

the iteration number is chosen too small, the cluster analysis results start to deteriorate rapidly. Here, Define 
( )r

gP  as the best position that the swarm has reached so far in the r-th local space, the different iteration numbers 

are tested by the varying fitness values MSEg of best particle gP  during the iteration calculation.  

3.2 Intelligent identification scheme by PSO and clustering 

By combining the PSO search and the K-means clustering, an improved intelligent identification scheme is 

proposed to harvest robust parameter estimation in the presence of stochastic noise. In short, the whole 

intelligent identification scheme is about “global PSO search — K-means clustering — local PSO search”. The 

detailed intelligent identification scheme is provided as Figure 2. 

There are two points to note in the intelligent identification scheme by PSO and clustering: (a) For keeping 

balance between exploitation and exploration in PSO, an adaptive inertia weight is proposed as: 

663



( )= −  − +max max max min 3w w k k w w r k
 

(10) 

where k represents the current iteration, maxk  is the maximum iteration number, 3r  is the random number in the 

range of [0, 1], minw  and maxw  are the lower and upper bounds respectively.(b) When the particle flies out of 

boundaries, this particle can be reset as: 

r r r r r r r rk r= +  −  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

min 4 max min max min( ) ( ), ,ij j j j ij j ij jx e e e x e or x e
 

(11) 

where r4 is a random number in the range of [0, 1]. The modified boundary processing method can improve the 

search efficiency significantly. 

 

 

Figure 2: The detailed intelligent identification scheme  

4. Numerical simulation 

In this section, simulation example is conducted to evaluate the proposed intelligent identification scheme for 

general Hammerstein-Wiener models. By setting MSE index of Eq(8) as the fitness function, the identification 

results are compared with the results obtained by the CPSO and NPSO intelligent search algorithms. Specially, 

for all the PSO searches, the parameters are set to: = = = =1 2 min max1.5, 1.5, 0.7, 1c c w w . 

In the example, a Hammerstein-Wiener model with non-smooth nonlinearities is considered. The linear block 

(Wills et al., 2013) is in the form of: 

z
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The true Hammerstein nonlinear block and the true Wiener nonlinear block are dead-zone function and 

saturation function respectively that can be expressed as: 
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For the identification models   ( , ), ( , )H Wf f   of the above nonlinear blocks, the piecewise linear description 

shown in Eq(5) to Eq(7) is adopted. The description is composed of a linear base and two “hinge” functions. It 
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is easy to see that there are 6 parameters in vector   as well as in vector  . Thus, the vector 

T
T T T T =  , , ,      contains twenty parameters that need to be identified. Besides, the input ut is an 

independent persistent excitation signal with zero-mean and variances  =2 22u . The ambient additive noise et 

follows the Student’s t-distribution: 

2~ (0, 0.3 , 4),te t
 

(13) 

where the location parameter is 0, the scale parameter is 0.32, and the freedom degree is 4. From Eq(13), it is 

known that stochastic noise et has properties of both zero-mean and heavy-tailed distribution. 

For the above model structure, the proposed intelligent identification scheme is conducted by PSO search and 

K-means clustering. Specifically, the initial parameter space is set to [-2, 2]. The inertia weights for both global 

PSO and local PSO take the form of Eq(10). After several search tests with the population number = 600N , it 

is known that a suitable iteration number of global PSO is 10 because the change of MSEg is starting to be 

unobvious after  10k .The varying process of MSEg is shown in Figure 3. Further, by observing different 

silhouette coefficients, the optimal category number ks of elite swarm is set to 6. After K-means clustering, the 

local PSO is implemented, and its iteration number is set to 500. Under these algorithmic settings, the global 

optimal solution can be obtained. The compared CPSO and NPSO search algorithms are conducted to harvest 

their results, and the relevant algorithmic settings remain the same as the settings of global PSO of proposed 

scheme. 

For the identification purpose, the first collected input-output samples are used to identify the model, while the 

next samples are employed as a validation set to ensure the predictive capability. The MSE indicator Eq(8) was 

used to evaluate the accuracy of the estimated model. For NPSO, CPSO and the proposed scheme, we run 

these three identification schemes ten times. Table 1 shows the mean values and standard deviations of final 

fitness indexes. From Table 1, it is concluded that the proposed intelligent identification scheme can provide 

more accurate identification results than the other two mainstream search algorithms. For the predictive 

capability of proposed scheme, the validating and estimated outputs are compared in Figure 4. 

Table 1: The final fitness indexes with different data lengths  

Data length L  100 300 1000 2000 3000 

Final MSE for NPSO 1.338±0.248 1.094±0.332 0.901±0.298 1.207±0.221 0.904±0.210 

Final MSE for CPSO 1.030±0.361 1.009±0.289 0.867±0.229 1.396±0.301 0.814±0.193 

Final MSE for our scheme 0.774±0.153 0.616±0.112 0.746±0.091 0.653±0.074 0.600±0.051 

Besides, the population number N has an impact on the accuracy of proposed scheme. In order to analyze this 

impact, for the different N, the global optimal fitness values under = 300L  are presented in Table 2. From Table 

2, it is easy to see that the fitness value becomes better with the population number N increasing. 

Table 2: The final fitness indexes with different population numbers s 

Population number N  300 400 500 600 700 

Index 1.1176 0.9157 0.9338 0.7010 0.4954 

  

Figure 3: The values of MSEg along time for global PSO in the proposed scheme  
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Figure 4: The predicted output quality of proposed intelligent identification scheme  

5. Conclusions 

A swarm intelligence-based identification scheme can make up for the weaknesses of classical PE and ML 

frameworks, and can give the global optimal parameter estimation from different perspectives. Especially for 

non-Gaussian noises, the accuracy of the parameter estimation is increased by 23 % to 53 % respectively at 

different data length relative to NPSO and CPSO.  An increase in the length of the data and an increase in the 

population number will cause the MSE value to decrease. The best final MSE value is 0.4954. Thus, with careful 

design of algorithmic details, the comprehensive intelligent scheme achieves high identification accuracy and 

suppresses pulse disturbance. Besides, the future research work can extend this identification scheme into the 

identification of other nonlinear systems, e.g., Wiener systems, Hammerstein OEMA systems, Wiener-

Hammerstein systems. By using its clustering and search of this identification scheme, the future research work 

will focus on the identification of large-scale nonlinear systems. 
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