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A model associated fluid flow and heat transfer of longitudinal flows of oil in pipes and channels are considered. 

The model is an extended version of the Bingham flow on the case of flow with one or two solid cores. The fluid 

part is a two-phase medium, wherein the disperse phase may consist of solid particles, droplets and gas 

bubbles. The sliding on the borders of pipes and channels, thermal conductivity and viscosity of such systems 

and their impact on the characteristics of the solid core are discussed. The flow with a yield point dependence 

on the temperature is also considered. 

1. Introduction 

The presence of foreign elements in the composition of oil and oil products turns it into a multiphase mixture 

and changes its transport properties. These changes affect viscosity and boundary conditions. Solid particles 

form deposits on the walls of pipes and channels. Drops and bubbles in the process of coagulation make the 

flow of non-stationary. These factors cause energy overruns during transportation. Usually, the influence of 

foreign elements is studied separately for particles, drops and bubbles. So it is important and relevant to consider 

the effect on the course of all these elements. 

The flowing of oil petroleum products in channels and pipes represents by itself an example of a movement of 

the multiphase mixture. During such movement, it is possible melting and hardening part of the flow area. It is 

possible the associated absorption and release of heat (Jinhyong Cho, 2019). The reason for the melting or 

solidification is the inflow or outflow of heat through the boundaries of the channels and pipes. The part of the 

flow which free from hardened substances participates in viscous flow, forming a flowing part of the movement. 

This fluid portion may look at its phase composition to be a suspension, liquid or gas emulsion (Hadi 

Bagherzadeh, 2019). To the suspension, the state calls a situation of incomplete curing so that the solid core is 

formed. To liquid emulsion calls the situation of capture by the oil-water or other fluid. Finally, as gas emulsion 

meets the situation of partial separation of the gas phase from the dissolved gases in the oil (Volkov et al., 

2008). It follows that the motion of such mixture may be considered on the basis of the Bingham model of the 

flow of a viscous fluid part. However, the model of such flow in the canonical form is insufficient because it 

cannot cover the entire range of related flow phenomena. There were formulated a longitudinal model of heat 

transfer and hydrodynamics for the flow of single-phase fluid with one or two solid cores for laminar and turbulent 

flow regimes with Newtonian, power and the laws of turbulent viscosity in Ι part. The heat transfer model 

represents a system of equations for temperatures of solid core (or cores) and temperatures of the fluid. The 

problem of creating a model of flow and heat transfer of oil and oil products, which takes into account their multi-

phase, melting and solidification, is extremely actual. 

2. Methods 

The above hydrodynamic model allows a number of extensions that make it able to cover such observed in 

practice phenomenon as slipping through the borders, presence of solid, liquid and gas inclusions in the fluid 
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part of the flow, viscosity and fluidity of the threshold shear rate, the viscosity and fluidity of threshold from 

temperature. Consider models of these phenomena in the order of their appearance, slide on the borders of a 

pipe or channel directly from the Bingham model and its generalizations to exponential and turbulent flow cannot 

be obtained because in the limiting case, when the conditions are met: 𝐺1
+ = ℎ and 𝐺2

− = −ℎ, the adhesion of 

solid nuclei to borders so that the upper part of the upper reaches and the lower part of the bottom disappear. 

Fluid part is entirely located between the solid cores, which move with velocities of the upper and lower 

boundaries of the pipe or channel, respectively. In order to circumvent the difficulty specified, it should assume 

the presence of a threshold slip at the boundaries of the pipe or channel, or very large, but finite value of viscosity 

in the solid core. The first of all, the first assumption is considered. For simplicity, this is done on the example of 

the upper core, which may come off from the top of the pipe or channel. In this case, all formulas of the present 

work should be the value of 𝑊+ in all the places of its occurrence, replace the velocity 𝜗∗, to be determined. 

The condition of sliding on the line 𝐺+ = h can be written as: 
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where 𝑓 – marking of functional dependence; 𝜏∗ – threshold slipping, PA; 𝛿 – the thickness of the thin fluid layer 

that separates the line 𝑦 = ℎ and 𝑦 = 𝐺+, м. In the simplest possible case can use the first term in the expansion 

of 𝑓 in powers of the difference (𝜏0 − 𝜏∗). In this case, for values of 𝜗∗ to be faithful to this expression: 
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Determining the value of δ should be determined experimentally. However, it is possible to do a qualitative 

evaluation based on the following considerations. The solidification process is started with some seed germ on 

which grown the solid phase. This process occurs in competition between nuclei. At this, not the entire volume 

of oil hardens, but only part of it, having a certain fraction composition. The rest of the factions remain fluid, but 

so that the whole system loses fluidity. In connection with such pattern in the system, there is a natural scale 

with the dimension of length, namely δ, which determines the characteristic size of the solidified particles. The 

second assumption, unlike the first, displays discussing phenomenon beyond the extended Bingham model. It 

consists in to assume that a solid core is not completely solid, but has, albeit small, but fluidity. In this case, the 

flow inside the core should solve the problem of viscous stoke flow in a pipe or channel width (ℎ − Г−) and the 

speed 𝜗∗ of the borders to be determined. The solution to this simple problem in combination with the condition 

of continuity of shear stress at the boundary of the nuclei y = h allows for the value of the velocity 𝜗∗ to obtain 

the following expression: 
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(3) 

in which 𝜇𝑘 – core viscosity, Pa∙s. 

Size 𝜇𝑘 and 𝛿 should be determined proceeding from the results of experiments. Similar reasoning applies to 

the lower core. In this case, in Eq(3) should be replaced the value 𝐺1
− on the size of 𝐺2

+, and the value of 

𝐺2
− should be equal to (−ℎ). In Eq(3) the longitudinal pressure gradient remains the same and all formulas of 

the extended Bingham model. Accounting the dependence of threshold yield strength of shear rate can be 

performed without much difficulty if it is demonstrated on the example of the Newtonian flow with a solid core 

inside. For this, it is needed to refer to the Eq(12) for the quantities 𝐺± from Ι part and to introduce the 

dependence on the shear rate in the amount 𝜏0. Taking into account the fact that the first derivative of the speed 

of the fluid part of the boundary 𝐺±  vanishes it is possible to use the average values of this derivative on 

sections (𝐺+, ℎ) and (−ℎ, 𝐺−). For simplicity a linear dependence of the threshold flow shear rate is proposed: 


= −
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0 00

y


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where 𝜏00 – constant, Pa; 𝑘 is a constant Pa∙s; 𝜉 is a constant Pa∙s; 〈… 〉 – is the mean value of the derivative 

on these intervals. According to Eq(12), Ι from I part to 𝐺± are obtained from the following relations: 
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It can be shown that the equation system in Eq(5) is reduced to two quadratic equations for the quantities 𝐺±. 

For example, the same currents can easily consider the case of the dependence of values of 𝜇 and 𝜏 on the 

temperature. In the approximation of the thermal boundary layer and without making any assumptions about 

specific types of dependencies 𝜇(𝑇) and 𝜏0(𝑇) it is possible to show that expression in Eq(12) hours from Ι part 

are transformed into the following system of equations: 
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(6) 

It can be shown that for 𝐺± this system of equations is also reduced to quadratic equations. The application of 

a hydrodynamic model for flows of suspensions, liquid emulsions and gas in the fluid part requires the ability to 

model the viscosity of mixtures. The difficulty is concluded in that universal laws do not exist. For Stokes flow 

regime of the fluid part of it is strictly known that the viscosity of suspensions and emulsions depends on the 

volume fraction of the dispersed phase; and in the limit of the smallness of the latter obey the law of Einstein-

Smoluchowskye and Hadamard-Rybczynskye (Betchelor, 2002). For moderate inertial currents from 

experimental data, it follows that the velocity profile becomes more "filled" with the growth of the volume 

concentration. Finally, inertial and turbulent flows the viscosity of the mixtures depends on both volumetric and 

mass fraction of the dispersed phase. Thus, for the Stokes regime, the Newtonian character of viscosity is 

retained, increasing the growth of volume fraction of the dispersed phase. The moderately inertial flow can be 

formally described by the model of power-law fluid with an exponent that depends on the volume fraction. Thus 

the following conditions on the viscosity characteristics are imposed: 
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where Ф – volume fraction of dispersed phase, dimensionless. 

The turbulent viscosity mixtures should be determined on the basis of experimental data. Case of gas emulsion 

requires separate consideration. The reason for this lies in the dependence of the solubility of the gas in the 

fluid pressure and temperature. In the hydrodynamic model presented in this manuscript in all formulas presents 

a longitudinal pressure gradient. If it is assumed that the region of the highest pressure at a given temperature 

there is a complete solubility, i.e., a gas as the dispersed phase is not, that by decreasing of pressure its isolation 

will be an occurred. Based on Henry's law as the easiest for the Ф value the following expression is had: 
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where 𝑅 – у universal gas constant, J/grad∙kmol; 𝑞 – specific heat of gas bubbles formation, J/kmol; 𝑀 – gas 

molar, kg/kmol; 𝐻0 – constant, c∙PA-1. 

The Eq(8) should be considered as argument of the exponent n in the Eq(7). As the temperature T should be 

used above certain temperature T±. 

There are presented the coefficients of heat emission in the model of heat change in the compulsory order. 

They include the coefficient of thermal conductivity. For a homogeneous fluid it is a constant substance if its 

dependence is accounted for from temperature. For the two-phase mixture, conductivity is a function of the 

phases characteristics. Its definition is possible in the framework of the approach, rising to the Rayleigh and 
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widely used in the description of particulate composites. Having in mind its application to liquid and gas 

emulsion, consider its essence. It consists of dividing the volume of the mixture in the unit cell so that each cell 

contains one representative of the dispersed phase and the surrounding continuous phase element. Such a cell 

allows for the splitting into sub-elements located along and across the local heat flux. These breakers meet the 

adiabatic and isothermal heat transfer (see Figure 1). 

 

 

Figure 1: Elementary cell. The model of the elementary cell: horizontal dashed lines meet isothermal 

decomposition; vertical dashed lines meet the adiabatic splitting. 1 – solid phase; 2-disperse phase 

For each type of transfer, the thermal conductivity has the following form: 
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where 𝜆𝑎, 𝜆𝑖, 𝜆1, 𝜆2 – coefficients of thermal conductivity of the mixture of solid and dispersed phases 

respectively, J/m∙s∙grad. 

Combination for 𝜆 in Eq(9) with a weight of ½ or weight, proportional to the angle of inclination of the heat flux 

vector to the vector orientation of the cell gives the value of the thermal conductivity of mixture. The result Eq(9) 

can be transferred to the case of a mixture with a liquid carrier phase if the following reasoning is used. The 

coefficient of thermal conductivity characterizes the non-convection heat transfer. In this case, the carrier phase 

is stationary. In the disperse phase in its individual elements, such as drops and gas bubbles possible micro-

scale movement mechanism of natural convection. To describe heat transfer through these elements, it is 

necessary to use the Rayleigh number 𝑅𝑎 and Grashof 𝐺𝑟, defined on the scale of an element of the dispersed 

phase. Thus, natural convection enhances the transfer of heat in them so that the actual coefficient of thermal 

conductivity 𝜆1 should be modified according to the following rule: 
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Where the replacement of temperature difference for the scale element of dispersed phase through temperature 

gradient according to the rule: ∆𝑇 ≅ ∇𝑇 ∙ 𝑑; 𝛽 – coefficient of thermal expansion of fluid, grad-1. 

In determining 𝜆 of the mixture should be considered as the carrier phase is stationary, despite the presence of 

the temperature distribution. In reality such things are impossible. If it is assumed that the carrier phase is 

involved in the movement, it certainly makes the determination of thermal conductivity. Thus, the construction 

of thermal conductivity coefficient of liquid mixture is related to a linear combination of values 𝜆𝑎 and 𝜆𝑖 by Eq(9) 

with the substitution for 𝜆2 in Eq(10). The coefficient of thermal conductivity of mixture acquires certain 

dependence from temperature. In these formulas is the element size of the dispersed phase 𝑑. For emulsion 

droplets this value is given. For gas this value should be determined based on the process of gas isolation and 

absorption.There are existed the following kinds of gas-isolation and gas-absorption: pressure and temperature 

changing. Pressure is decreased at the moving in a pipe or channel and temperature is changed in accordance 

with Eq(1), Eq(3) Ι part. Out coming from the simple Henry's law, it is possible to calculate the volume fraction 

of gas phase emitted or absorbed from the following formula: 
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where 𝑅 – universal gas constant, J/kmol∙grad; 𝑞 – specific heat of gas isolation or absorption, J/kmol; 𝑀 – 

molar of gas, kg/kmol; 𝑃𝑓 and 𝑃𝑔 – pressure in fluid and gas in accordingly, PA. 
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To determine the diameter of bubbles should be a used such reasons. For definiteness below the case of gas 

isolation is considered. In any small volume flow of a mixture of length 𝑑𝑥 and cross-sectional area 𝑆⊥ occurs 

as the growth of bubbles, which were formed earlier in the section preceding this, and the birth of germinal 

bubbles. Assuming that the growth of bubbles occurs by the diffusion mechanism the equation for the diameter 

𝑑 can be written in the form: 
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( )  =  − =  ;f g g f

d d
C C C H P

dx
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where 𝛽𝑔 – coefficient of mass transfer at the interface, the dimension of which depends on the choice of the 

dimension of concentration; 𝐶𝑔 – gas concentration. 

The process of nucleation is determined by the probability of formation of the embryo in the meta-stable liquid 

phase as a result of local overheating or local reduction of pressure. Using the expression for the critical size 

 𝑑∗ of the germinal bubble: 𝑑∗ = 4𝜎 (𝑃𝑓 − 𝑃𝑔)⁄  and considering the work done by the surface tension 𝜎 at the 

interface boundary for the probability of local overheating and discharge, you can obtain the following 

expression: 
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where 𝜗𝑔, 𝜗𝑓 – specific volumes of gas and liquid, m3/molecule.  

If (𝛿 ∙ 𝑃𝑓) and (𝛿 ∙ 𝑇𝑓) is integrated as changes of pressure and temperature on the length equal to the size of 

the bubble, (𝛿 ∙ 𝑃𝑓) and (𝛿 ∙ 𝑇𝑓) should be replaced by (∇𝑃 ∙ 𝑑) and (∇𝑇 ∙ 𝑑). The total number of embryos that 

may occur in the volume (𝑑𝑥 ∙ 𝑆⊥), can be estimated as (𝑑𝑥 ∙ 𝑆⊥) 𝑑∗3⁄ . For the number of embryos 𝑁∗ of gas 

phase is obtained the following estimate: 
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The total quantity of heat is released in the current mixture it can be considered spent for the nucleation and 

growth of bubbles. The expression for this balance is as follows: 
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where 𝑑Ф is determined from the Eg(7). 

It follows from Eq(7) to Eq(15) that average bubble size can be calculated by taking the weighted average 

diameter by the number of bubbles generated in the interval 𝑑𝑥 near the point with 𝑥 -coordinate. This weighted 

average diameter 〈𝑑〉 has the following form: 
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0 0

, /
x x
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This diameter should be substituted in Eq(10) to calculate the thermal conductivity of the mixture using Eq(9). 

The value of 𝑑(𝑢, 𝑥) is a solution of Eq(12) which provided that the growth of the bubble is considered in the 

time interval corresponding to the spatial interval (𝑢, 𝑥). 

3. Discussion of the results 

The presented in this manuscript the three-temperature heat-transfer model based on the viscous-plasticity 

generalization of the Bingham flow model in a pipe or channel, allows, in principle, to find the longitudinal 

distribution of temperatures (Tolchinsky et al., 2016). There are developed and discussed two models of slip at 

the boundaries in the present work. One is formal, which postulated a relationship between the threshold slip 

speed and slip. The specific form of this communication should be established experimentally. Another model 

includes a full waiver of the hardness kernel. This means that the core has a shear rate within a non-zero, 

though small in magnitude. This model requires the determination of the viscosity kernel, which is a great value. 

In this case, the core becomes small, the curvature of the velocity profile. Both models include such easily 

detectable parameter, the thickness of the fluid layer. In the event of an agreement with the experimental data, 

this parameter can act as free. If it is assumed that this thin border layer must withstand the pressure that exists 

inside the flow region for reasons of dimension the thickness of this layer should be in the order of magnitude is 
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equal to the ratio of a specific one of surface tension to the pressure. This circumstance makes the problem of 

flow in a fluid part depends not only on the pressure gradient and the pressure. It should be emphasized that in 

the hydrodynamic model in the present work the pressure gradient is considered as a given external parameter. 

The dependence of the thickness of the thin border layer of pressure does not allow considering the pressure 

gradient is specified. In this case, the hydrodynamic model should include an equation to determine the pressure 

along the pipe or channel at the ends of the channel boundary values of pressure. This task can be formulated 

and solved, but this solution is beyond the scope of this work. From the model with a thin border layer of fluid, it 

follows that for large values of the velocity shear threshold, the yield stress must vanish. In this paper, as an 

illustration, is considered the linear dependence of threshold yield strength of shear rate; thus for simplicity and 

solvability of the equations to determine the boundaries of the nucleus is taken into account only the transverse 

component of the shear rate. The specific form of dependence for the threshold yield strength must be 

determined experimentally. Suspensions and emulsions flowing in stokes regime remain at low volumetric 

concentrations Newtonian properties, which leads to their flow with stable velocity profile. This concentration 

depends on the amplitude profile. For inertial flow, as shows experiment, the filling of the velocity profile 

increases, i.e. suspension or emulsion in own flowing like a solid body. In this case, the appropriate model is a 

power law fluid with exponent, depending on the value of the volume concentration. 

A quantitative estimate of the magnitude of separation or gas absorption the authors proceed from Henry's law. 

This law is valid at low concentrations, so that with the growth of the last observed deviation from it. This 

somewhat limits the results presented in work. Such limitation can be easily overcome if this law is considered 

as the first term in the Taylor series decomposition of the total dependence of the amount of dissolved gas from 

the pressure in the system. The model for calculating the heat transfer coefficient for particulate composites with 

isolated inclusions is standard, but its distribution in the emulsion can cause issues. In this case, the authors 

proceeded from the following reasoning. The presence of liquid or gaseous inclusions in the unit cell of the solid 

phase requires adding to the flow of heat by the mechanism of heat conduction through the inclusion of flow 

from the natural convection. In this case, the conductivity of the composite acquires a dependence on the 

temperature gradient. The transition from solid composite with a liquid inclusion to the emulsion as the composite 

of liquid (gas) the inclusion of solid and liquid phase requires the conditions of non-flowing of last one. Therefore 

such a condition in the presence of the temperature gradient in real life is impossible. However, this is only a 

technique that allows building a model of the thermal conductivity so that the solution of thermal problems for 

emulsions is the property of their fluidity is restored. The model of nucleation in meta-stable conditions when 

the reasons for the formation of the embryo of a new (gas) phase acts as a fluctuation of pressure and (or) 

temperature is interpreted in such way that these fluctuations are determined by the longitudinal gradients of 

pressure and temperature and size of the inclusions. The model of growth or reduction of gas bubbles is the 

standard diffusion model. 

4. Conclusions 

The presented in the present work the model of rheological properties of suspensions and emulsions, if by this 

property of the solid core, in principle, able to cover many aspects of the flow of oil and oil products in pipes or 

channels under the conditions of heat exchange with the boundaries is understood. The model is open with 

respect to improvements of various components so that in combination with experimental data can be useful in 

practical applications. 
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