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The full operation of an industrial processing facility with artificial intelligence has been the holy grail of Industry 

4.0. One of the inherent difficulties is the enumerate and complex nature of processing information within an 

industrial plant. Hence, such data should be processed efficiently. This paper demonstrates the effectiveness 

of a deep auto-encoder neural network for the dimensionality reduction of industrial processing data. The deep 

auto-encoder neural network functions to intake all possible processing data from the processing system by 

sending it into an encoder neural network. Subsequently, the encoder condenses the data into highly 

compressed encoded variables. The network is trained in an unsupervised manner, where a decoder neural 

network simultaneously attempts to revert the encoded variables to their original form. Such a deep learning 

approach allows data to be highly compressed into lower dimensions. The coded variables retain critical 

information of the processing system, allowing reconstruction of the full process data. Auto-encoder neural 

networks are also able to provide noise removal for encoded data. For application, the encoded variable can be 

utilized as an effective dimension-reduced variable that can be used for plant-wide optimization. This paper also 

discusses the further applications of encoded variables for industrial process improvements using the Industrial 

Internet of Things (IIoT) technologies. 

1. Introduction 

Deep learning is a specialized strain of machine learning which utilizes computation models with multiple 

processing layers to learn representations of data with multiple levels of abstraction (LeCun et al., 2015). One 

of the core-enabling technology of deep learning is the invention of deep neural networks. Neural networks 

originate from the fields of neuroscience where McCulloch and Pitts (1943) first formalized the mathematical 

model of the biological neural activity inside the brain. The first model of this neural graph consists of three main 

components, which are the dendrites, soma, and axon. This simple model of the neuron is later referred to as 

the McCulloch-Pitts neuron and has opened the doors to the popular deep learning as it is today. Although 

behaviors of nervous activity can be explained using McCulloch and Pitts’ approach, there was one key dynamic 

factor that was missing, that is the simulation of neural learning. This piece of irreplaceable technology for the 

development of deep learning is later implemented using the theory of backpropagation. Backpropagation is 

based on the method of automatic differentiation which was first published by Seppo (1970) in his master’s 

thesis. Later, Rumelhart et al. (1988) popularized the use of the backpropagation method by applying it to 

learning representations in a self-organizing neural network. Today, deep learning has demonstrated 

remarkable success in applications of computer vision, medical diagnosis, phonetic identification, voice 

recognition, feature coding, natural language processing, robotics, computer games, molecular and drug 

analysis (Deng and Yu, 2014).  

The pivotal factor that differentiates deep learning as a subfield of machine learning is the action of learning 

intrinsic representations in a hierarchical manner (Bengio et al., 2013). Some research works such as Mhaskar 

and Poggio (2016) classifies single hidden layer neural networks as shallow networks while neural network with 

multiple hidden layers is classified as deep neural networks. Poggio et al. (2017) have also reviewed and 

compiled mathematical proofs and experiments of situations which deep networks perform better than shallow 

networks. Even for practical applications, deep learning has substantially outperformed other good old-
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fashioned Artificial Intelligence (GOFAI) in the aspects of expressibility, efficiency, and learnability (Lin et al., 

2017). Although there are occasionally implementations of shallow learning that can attain performance close 

to deep learning (Ba and Caruana, 2014), the state-of-art record holder for application performances are always 

either deep, or very deep neural networks (Szegedy et al., 2017).  

The first step to transfer deep learning techniques to process system engineering (PSE) is not to start from the 

commonly used supervised learning. Statistical methods dominate the field of predictive analysis in PSE, as 

shown in the works of Boukouvala et al. (2010) where surface response methodology was used to predict 

missing and noisy data. Furthermore, Teng et al. (2019) demonstrated a novel principal component-aided 

statistical process optimization (PASPO) method which achieved state-of-art results in a real oil refinery. 

Although deep learning methodologies often outperform statistical methods (Máša et al., 2018), these statistical 

methods have already proven their robustness and firmed their roots in the grounds of PSE predictive analysis. 

Dimension reduction using deep learning (Hinton and Salakhutdinov, 2006) is one of the most promising and 

implementable directions for PSE. Traditionally, dimension reduction techniques are already applied in PSE, 

such as the work of Li and Wang (2002), which utilized independent component analysis (ICA) for dimension 

reduction of dynamic trends. Principal component analysis (PCA) was utilized to evaluate (How and Lam, 2017) 

and to debottleneck (How and Lam, 2018) integrated biomass supply chain. With the requirements of a leaner 

and greener manufacturing process (Leong et al., 2019), there is a need for more advanced dimension reduction 

techniques (Lam et al., 2011). 

Main problems of implementing deep and reinforcement learning in the real world are: (i) Rewards in a real-

world setting are non-direct, sparse and sometimes imperfect; (ii) Models are often inaccurate or non-robust for 

the use of model-based method; (iii) Other technical challenges such as model seedings and network 

architecture (Henderson et al., 2018). Despite these challenges, three main topics within PSE are the most 

potential areas for the implementation of deep learning techniques, which are Process Integration, process 

optimization, and process intensification. By insightful speculation, the latter topic is the more difficult area to 

implement techniques of deep learning. 

The contribution of this paper is to extend the ideologies and methods of deep feature learning towards PSE. 

This work also demonstrates the use of a novel autoencoder for process system engineering which effectively 

outperformed the engineering state-of-art analysis. The specialty of Evolutionary Deep Autoencoder is that both 

neural architecture and activation functions are being co-optimized in the training process. 

2. Methods and theory 

The overall framework of this paper is shown in Figure 1. The framework is implemented in a continuous process 

improvement cycle in order to consistently optimize and debottleneck the processing system of interest. Process 

Integration, optimization, and intensification focus on the interaction between units, optimality of operational 

parameters and higher performance density respectively. Objective evaluation ensures that criteria for process 

improvements are being achieved.  

 

Figure 1: Theoretical framework of Deep process improvement 

2.1 Learnable Data Extraction in the Processing Industry 

The availability of learnable data varies for each industrial facility at a different phase. From the experience of 

industrial projects, the availability of useful data is maximal during initial data extraction. The most expensive 

phase for data collection is during the calibration and testing phase as bad implementation can directly damage 
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processing equipment. This highlights the criticality of front-end loading by doing data analysis using deep 

learning before calibration and testing (See Figure 2). 

 

 

Figure 2: Availability and criticality of data at different phases of industrial process improvement projects 

2.2 Deep Dimension Reduction 

This paper utilizes a deep autoencoder to process large and sparse data collected from industrial facilities. An 

autoencoder is a special type of neural network that is used for feature learning in an unsupervised manner. 

Information from a high dimensional input can be hierarchically encoded into network layers of lesser neurons 

(See figure 3). The layer with the least number of neurons is called the bottleneck layer, in which information is 

forced through a small-dimensional latent space. To ensure that the latent variables retain a large representation 

of the data, a decoder neural network attempts to map the latent variables to the original input. 

 

                

                               (a)                                                                                        (b) 

Figure 3: (a) Structure of autoencoder (b) Autoencoder retaining information under dimension reduction (Toy 

problem using 60k MNIST dataset) 

A visual example has been created using JavaScript language to visualize the mechanisms of an autoencoder 

can be observed in Figure 3(b). A convolutional autoencoder is trained on the MNIST handwritten digit 

benchmark dataset. Handwritten digits from the input can be compressed into a small latent space, and then be 

dimensionally expanded to retain critical information of the input. Although the reconstruction of information is 

not perfect, the autoencoder learns critical features of the full data set and generalizes the learning output. 

In this work, an evolutionary autoencoder (also known as EvoAE) is implemented using Elitist Strategy Genetic 

Algorithm (ESGA) with adaptive learning rate optimization algorithm (Adam) to reduce the dimension of the 

processing system. The uniqueness of evolutionary autoencoders is such that both the activation functions and 

neural architecture are also hyper-optimized in the learning process. All computation work was implemented in 
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Python and C/C++ language using custom codes and libraries such as Sklearn and Tensorflow. Prior to 

dimension reduction, all data were normalized using a min-max normalization routine to standardize data 

between 0 and 1. Mean absolute error (MAE) was chosen as the benchmark criteria for dimension reduction 

accuracy because it gives a proportionate indication to the variability of data in the processing system. 

2.3 Case Study 

For the purpose of demonstration, a case study which consists of an area of the oil refinery plant is simulated. 

The process consists of oil being heated and then flashed in a flash tower with a recycle loop. The vapor top 

product is cooled into a stream of light oil and is collected, while the bottom oil product is stored for further 

processing (See Figure 4). 

 

 

Figure 4: Case study and usage of autoencoder for process improvement 

Monte Carlo simulation was implemented on the simulation model with Gaussian noises to stochastically 

generate process variables (See Eq(1) and Eq(2)). A total of 13,000 data points was simulated using this 

approach. 10,000 data points were allocated for training, while the remaining 3,000 data points were used for 

validation. 15 dimensions of process variables were recorded, which includes temperature, pressure, flow rate, 

density and viscosity of processing fluid at different parts of the process. 

𝑦(𝑠) = 𝑚(𝑠) +  𝜀         (1) 

𝜀 ~ 𝑁( 0,  𝜎2)  (2) 

Where y(s) is the stochastic process variables at a discrete state “s”, m is the stochastic ground truth at discrete 

state “s”, and ε is Gaussian noise which follows a normal distribution at 99% confidence interval.  

3. Results and discussion 

By using the processing information dataset that contains noise and stochasticity, an autoencoder was trained 

using the neuro-evolution approach allowing variability of neural architectures. A latent dimension of 2 was 

specified to enable for effective interpretability of reduced variables. Neuro-evolution has shown no significant 

improvements in performance at the 100th generation with a structure of [15, 25, 10, 2, 2, 13, 15] and training 

was stopped. The detailed architecture of the neural network is shown in Figure 5. 

The performance of the evolutionary deep autoencoder is compared with state-of-art dimension reduction 

methodologies and was shown to out-perform all prior process system engineering methods (See Table 1).  
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Figure 5: Optimal structure of evolutionary deep autoencoder 

Table 1: Comparison between state-of-art dimension reduction methods using 2 latent dimensions 

Dimension Reduction Method Code Implementation Reference Validation Mean Absolute 

Error (%) 

Principal Component Analysis (PCA) Tipping and Biship (1999) 12.07 

Linear Kernel PCA Schölkopf el al. (1997) 12.07 

RBF Kernel PCA Schölkopf el al. (1997) 11.93 

Polynomial Kernel PCA Schölkopf el al. (1997) 11.52 

Sigmoid Kernel PCA Schölkopf el al. (1997) 14.03 

Independent Component Analysis (ICA) Hyvärinen and Oja. (2000) 12.07 

Non-negative Matrix Factorization (NMF) Févotte and Idier (2011) 16.52 

Evolutionary Deep Autoencoder This work 9.54 

Benchmark Autoencoder See footnote* 16.75 

*The autoencoder architecture is [15,11,7,2,7,11,15] and activation functions are all sigmoid. This is a 

conventional heuristic which approximately equalizes changes in neurons of each hidden layer. 

3.1 Applications 

Dimension reduction using evolutionary deep autoencoder enables more efficient consideration of variables and 

a compressed search space for process optimization, integration and intensification. Using such techniques, 

the most critical aspects of the processing system can be targeted and improved. The bandwidth of transferring 

processing information can also be reduced using this approach to enable low latency protocols such as 

LongRange (LoRa) in the Industrial Internet of Things (IIoT) settings for rapid industrial improvement.  

3.2 Limitations and future works 

The main limitation of this approach is the availability and reliability of real data. In future works, extended use 

of the Evolutionary Deep Autoencoder to efficiently carry out fully autonomous plant-wide optimization. A more 

detailed implementation guideline for objective evaluation will also be provided in future works. 

4. Conclusions 

This work has demonstrated the use of novel evolutionary deep autoencoder for the dimension reduction of 

industrial processing systems. The autoencoder neural network was applied to reduce process information 

within an oil refinery processing system and achieved a Mean Absolute Error of 9.54 % with only two latent 

dimensions. By comparing with methods such as Independent Component Analysis (ICA), Non-negative Matrix 

Factorization (NMF) and various types of Principal Component Analysis (PCA), the proposed approach 

significantly outperformed the state-of-art methods in process system engineering.  
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