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CO2 adsorption on a yellow tuff has been studied, by performing dynamic breakthrough experiments in fixed 
bed, focusing on the thermodynamics and kinetics of the process. The effect of both temperature (25 – 150 
°C) and CO2 partial pressure (0.01 – 0.20 atm) has been assessed. The CO2 adsorption isotherms in the low 
pressure region typical of combustion flue gases are more accurately described by the Freundlich equation 
than by the Langmuir one, thus indicating a multilayer and heterogeneous surface binding. The obtained 
values of the main thermodynamic parameters suggested that the adsorption process is spontaneous, 
exothermic and physical in nature. The pseudo-first order kinetic model better fitted the experimental data at 
all the investigated adsorption temperatures than the pseudo-second order does. 

1. Introduction 
Among all the available post-combustion capture technologies, adsorption using solid sorbents is 
characterized by low regeneration energy consumption, selectivity, easiness in handling, no liquid waste 
streams and applicability over a relatively wide range of operating temperatures (Raganati et al., 2016). 
However, the choice of the adsorbent material represents a critical point for the success of this approach 
(Gargiulo et al., 2016). Indeed, the sorbent should combine low cost with versatility and good performances at 
low CO2 pressure (Ramli et al., 2014), up to 0.2 atm in typical post-combustion conditions (Raganati et al., 
2015). In this context, great attention has been focused on zeolites. Synthetic zeolites are highly ordered 
microporous crystalline materials, synthetized with a very specific and suitable molecular cell size, giving them 
the intrinsic capability to adsorb polar species (Siriwardane et al., 2001). However, their high synthesis cost 
and the environmental footprint represent a negative contribute to their sustainability (Siriwardane et al., 
2001). A possible alternative is provided by natural occurring zeolites, as they are available in large quantities 
in the natural composition of different types of rocks (Ackley et al., 2003). Therefore, they are low-cost 
sorbents, not needing “ad hoc” synthesis, and environmental-friendly, not introducing additional CO2 in the 
environment (Ackley et al., 2003). Their abundance and low or null price, somehow, offset some unavoidable 
drawbacks such as variable composition that may change even in a single deposit, low purity and likely poorer 
separation performance compared to the more-performant synthetic zeolites (Ackley et al., 2003). In this 
framework, the volcanic tuffs are the most valuable deposits of natural zeolites and they are characterized by 
the presence of different minerals, such as: clinoptilite, mordenite, chabazite, quartz, cristobalite, feldspar, etc. 
(Colella, 2008). Nonetheless, the literature about the use of natural tuff as CO2 adsorbent at low pressure is 
still lacking. After the selection of the adsorbent material, a combined study of the equilibrium and kinetics is 
necessary for the design of the specific adsorption system (such as pressure swing and temperature swing). 
Indeed, the accurate mathematical representation of both the adsorption equilibrium and kinetics is crucial for 
the identification of the adsorption performances, by providing useful insight into the adsorbate-adsorbent 
interactions (Raganati et al., 2018). In particular, a good adsorbent should provide the right compromise 
between high equilibrium adsorption capacity and fast kinetics  that are requisites for process implementation 
(Raganati et al., 2018). This work is aimed at investigating the low-pressure CO2 adsorption on a natural 
zeolite tuff, with particular attention to its mechanism, in terms of thermodynamics and kinetics. Dynamic 
breakthrough tests have been carried out in a in a lab-scale fixed bed reactor. In particular, the tuff was tested 
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at different adsorption temperatures (25-150 °C) and CO2 partial pressures (0.01 – 0.20 atm). Then, the 
Langmuir and Freundlich isotherm models have been used to fit the experimental equilibrium data in the low 
CO2 pressure region typical of a combustion flue gas. The evaluation of the most important thermodynamic 
properties, i.e. the standard Gibbs free energy, enthalpy change, entropy change and isosteric heat of 
adsorption, has provided insights into the feasibility and strength of adsorbate–adsorbent interaction. Pseudo-
first and pseudo-second order kinetic models have been used to fit the experimental CO2 uptake data, thus 
obtaining the rate of CO2 adsorption for possible equipment design. 

2. Experimentals 
Materials and experimental apparatus: A natural yellow tuff from Campania (I) region has been used as 
adsorbent material. The sample has been crushed and sieved to obtain a 400-600 μm fraction. Prior to the 
CO2 adsorption study, the tuff physical and structural properties have been characterized. The internal 
porosity and the absolute density of the material have determined by employing mercury intrusion porosimetry 
(MIP, ThermoFinnigan 240). XRD analysis has provided the phase composition of the tuff by using a Bruker 
D8 Advance powder diffractometer with Cu Kα radiation. The CO2 dynamic breakthrough tests were carried 
out at atmospheric pressure in a laboratory-scale fixed bed reactor (ID = 10 mm, column length = 600 mm). 
More detailed information can be found elsewhere (Gargiulo et al., 2018). Separate high purity N2 and CO2 
cylinders (99.995% vol.) are used to prepare the gas feed, using two mass flow controllers (Brooks 8550S) to 
set and control the inlet flowrates. The analysis system consists of a continuous gas analyzer equipped with 
an infrared detector (ABB AO2020, URAS 14). In a typical adsorption test, the sorbent (5 g, corresponding to 
about 5 cm of bed height) is subjected to a drying/cleaning step by flowing N2 (15 L h-1) for 60 min at 150 °C. 
Afterwards, the sorbent is pre-conditioned for about 10 min by setting the temperature (25, 40, 70, 100 and 
150 °C) to the desired value and fluxing 15 L h-1 of N2 through the system. This is followed by the adsorption 
step in which 15 L h-1 of the CO2/N2 gas mixture (1, 3, 5, 10, 15 and 20 % vol. of CO2) is fed through column. 
By continuously monitoring the CO2 concentration in the outlet stream until saturation of the bed (i.e. the outlet 
CO2 concentration approached the inlet value) the breakthrough curves are obtained. 
Adsorption thermodynamics: Langmuir and Freundlich models have been employed to fit the experimental 
adsorption isotherms of the tuff. The Langmuir model is the simplest theoretical model to describe monolayer 
adsorption onto homogeneous surfaces (i.e. the adsorption sites are equivalent from an energetic point of 
view) (Raganati et al., 2018) and it is based on the following mathematical expression:  ݍ௘ = ௅ݍ ௅ܭ ஼ܲைమ1 + ௅ܭ ஼ܲைమ (1) 

where qe (mmol g-1) is the amount of CO2 adsorbed per mass of sorbent at equilibrium, qL (mmol g-1) is the 
maximum monolayer adsorption capacity of the adsorbent, PCO2 (atm) is the equilibrium pressure of the gas 
adsorbed, whilst KL (atm-1) is the Langmuir adsorption constant or affinity constant. The Freundlich model is 
the first empirical equation to describe non-ideal multilayer adsorption onto heterogeneous surfaces and it 
assumes that the adsorption energy exponentially decreases as the number of available adsorption sites 
decreases (Raganati et al., 2018). Its mathematical expression is: ݍ௘ = ிܭ ஼ܲைమଵ ௡ൗ  (2) 

where KF is the Freundlich isotherm constant (mmol g-1 atm-1/n) and n is the heterogeneity factor (Freundlich 
coefficient). The ratio 1/n is the Freundlich intensity parameter and it is a measure of the adsorbate/adsorbent 
binding energy and surface heterogeneity (Freundlich, 1906). Moreover, the magnitude of 1/n gives insight on 
whether the process is favorable or not, the adsorption being favorable at 1/n < 1 (Freundlich, 1906). The 
quality of the isotherm fit by Lamgmuir and Frenundlich models to experimental data has been assessed by 
evaluating the coefficient of correlation, R2, and the HYBRID error function (Raganati et al., 2018). The most 
important thermodynamic parameters, i.e. the standard Gibbs free energy change (∆G0, kJ mol-1), the 
enthalpy change (∆H0, kJ mol-1), and the entropy change (∆S0, kJ mol-1), have been evaluated by combining 
the thermodynamic laws with the experimental data obtained from the Langmuir isotherms and by applying the 
van’t Hoff equation, in order to obtain information on the nature of the adsorbent-adsorbate interactions and on 
the energetic heterogeneity of the solid surface (Raganati et al., 2018). Also the isosteric heat of adsorption 
(Qst), defined as the heat of adsorption at constant amount of adsorbed adsorbate, has been evaluated since 
it can provide an estimation of the strength of molecular-scale interactions between the adsorbate molecules 
and the adsorbent surface (Raganati et al., 2018). Qst (kJ mol-1) at a given qe can be calculated, after 
integrating the Clausius–Clapeyron equation, from the slopes of the plot of lnPCO2 against 1/T at a fixed 
specified adsorbed amount of CO2 (Raganati et al., 2018). 
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Adsorption kinetics: Among the kinetic models available in the literature, pseudo-first order and pseudo-
second order models are the simplest and most extensively used ones (Raganati et al., 2018). The 
mathematical expression pseudo-first order kinetic model is given by (Raganati et al., 2018): ݍ௧ = ௘ൣ1ݍ −  ൯൧ (3)ݐ൫−݇௙݌ݔ݁

where qt (mmol g-1) is the amount of CO2 adsorbed per mass of sorbent at the time t, and kf (min-1) is the rate 
constant of first-order sorption. This model can properly describe a reversible type of adsorbate/adsorbent 
interactions, as the case of CO2 adsorption on physical adsorbents like activated carbons and zeolites 
(Loganathan et al., 2014). The mathematical expression of the second order kinetic model is (Loganathan et 
al., 2014): ݍ௧ = 1ݐ௘ଶ݇௦ݍ +  (4) ݐ௘݇௦ݍ

where ks (g mmol-1 min-1) is the second order rate constant. This model assumes that, besides weak physical 
interactions, adsorption is also associated to chemical adsorbate/adsorbent interactions, thus being generally 
most suited to describe chemisorption (Loganathan et al., 2014). The fitting quality of the kinetic models to the 
experimental data has been then assessed by R2 and HYBRID (Raganati et al., 2018). 

3. Results and discussions 
Materials characterization: The tuff is characterized by a rather high level of cristallinity, with characteristic 
reflection peaks of chabazite located at 2θ=20.45, 22.86, 24.61, 30.40, and 30.73, typically abundant in 
natural zeolites, together with other impurities (feldspar, quartz, calcite, etc.) (Ammendola et al., 2017). 
Detailed information regarding the morphology, chemical composition and pore distribution of the tuff can be 
found elsewhere (Ammendola et al., 2017), also including SEM and N2 adsorption characterization. Briefly, the 
material is characterized by micronic cubic shaped structures, typical of the zeolites, as well as glassy regions, 
and it is basically microporous (7 Å < d < 20 Å) with a unimodal pore size distribution, as typically reported for 
zeolites. The corresponding BET surface area is 141 m2 g-1. 
Adsorption thermodynamics: The fitting of the experimental data by Langmuir and Freundlich models are 
reported in Figure 1. Table 1 reports the values of the model parameters, R2 and HYBRID.  

 
Figure 1: CO2 adsorption isotherms fitted by: a) Langmuir model; b) Freundlich model. 

Figure 1 clearly shows that both the models used in this work fitted the experimental results quite well, in line 
with the results obtained by other Authors with physical sorbents (Guo et al., 2006). This was also confirmed 
by the fact that R2 is always larger than 0.99 and HYBRID is always lower than 0.5%. As a matter of fact, it is 
quite common that both Langmuir and Freundlich isotherms are able to fairly fit the same set of CO2 
adsorption data at certain CO2 partial pressure ranges, at least from a macroscopic point of view (Monazam et 
al., 2013). In particular, this is true especially when PCO2 is small (i.e. < 0.1atm, as typical of post-combustion 
capture applications) and qe is also small enough to have linear shape of adsorption isotherm. As a 
confirmation, it clearly appears from Figure 1a that the Langmuir fitting is less accurate at lower temperatures, 
i.e. when qe is larger and the adsorption isotherms moves away from the linearity. This can be ascribed to the 
fact that when a larger amount of CO2 is adsorbed, it is most likely that multiple layers of CO2 molecules are 
adsorbed on the sorbent surface; as a consequence, Freundlich model is able to give a better fitting. As 
regards the effect of temperature, Table 1 clearly shows that, when temperature is increased, the predicted 
values of maximum amount of CO2 adsorbed (qL) and adsorption isotherm constants (KL and KF) decreased. 
This is in line with the exothermicity of the CO2 adsorption phenomenon on the tuff, i.e. it is thermodynamically 
favored at low temperatures. Also regarding the results obtained from the Freundlich model, n > 1 at all the 
investigated temperatures, which is an indication of a high level of heterogeneity of the system as long as of 
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good adsorption intensity (Freundlich, 1906). Also, the dependence of n on the adsorption temperature is a 
further confirmation of the fact that CO2 adsorption on the tuff is favored at low temperatures, according to its 
exothermic in nature. 

Table 1. Langmuir and Freundlich adsorption equation parameters and fitting comparison. 

T, 
°C 

Langmuir  Freundlich 
qL KL R2 HYBRID  kF n 1/n R2 HYBRID 

25 0.826 24.988 0.994 0.526  1.341 2.616 0.382 0.999 0.035 
40 0.859 14.968 0.994 0.479  1.430 2.129 0.469 0.999 0.020 
70 0.684 9.526 0.994 0.352  1.128 1.808 0.553 0.999 0.076 
100 0.636 4.556 0.997 0.212  0.939 1.448 0.690 0.999 0.072 
150 0.493 3.373 0.998 0.129  0.665 1.347 0.742 0.999 0.055 

 
Figure 2a reports van’t Hoff plot for the natural tuff in the temperature range of 25 - 150 °C. The values of ∆H0, 
∆S0 and ∆G0 are listed in Table 2. ∆G0 is always negative, thus indicating that the CO2 adsorption process on 
the tuff occurs favorably and spontaneously at all the adopted adsorption temperatures. Besides that, the van’t 
Hoff plot exhibits an increasing trend; i.e. when temperature is increased, the magnitude of ∆G0 is decreased, 
which is a confirmation of the adsorption feasibility decreasing at higher temperatures. This is also in line with 
the above reported adsorption isotherms. ∆H0 is also negative, which further confirms the exothermicity of the 
adsorption process, i.e. energy in form of heat is generated into its surroundings during the adsorptive process 
since new physical/chemical bonds are formed. As regards its magnitude, ∆H0 values are lower than 20 kJ 
mol-1, thus confirming that CO2 adsorption on the tuff is physical in nature (Raganati et al., 2018). Finally, ∆S0 
is also negative, meaning that the disorder and randomness of the system decrease during the adsorption 
process. Indeed, when adsorbed on the tuff surface, the CO2 molecules lose the freedom of movement they 
have in the gaseous phase (Raganati et al., 2018). 

 
Figure 2: a) Van’t Hoff plot. b) Variation of the isosteric heat of adsorption with the CO2 loading. 

Table 2. Thermodynamic properties for CO2 adsorption on the natural tuff. 

ΔH0 ΔS0  ΔG0 

-17.04 -0.031 
 18°C 40°C 70°C 100°C 150°C 
 -7.709 -7.239 -6.300 -5.360 -3.794 

 
Figure 2b shows Qst as a function of the CO2 loading. Qst ranges between 15 and 45 kJ mol-1 that are typical 
of a purely physical interaction (< 80 kJ mol-1). Then, it is clear from Fig. 2b that Qst decreases with increasing 
CO2 surface loading, which means that the tuff is characterized by a high level of heterogeneity and that there 
is a variation in adsorbate-adsorbent and adsorbate-adsorbate interactions. This evidence can be explained 
considering that at the initial stages of adsorption, large numbers of free adsorption sites are available on the 
tuff surface. Therefore, the CO2 molecules may easily come into direct contact with adsorbent surface; as a 
consequence, the activation energy is low and the heat of adsorption is high. As the adsorption process 
continues to take place, i.e. the surface coverage is increased, less and less adsorption sites are still available 
and, as a consequence, the adsorption of further CO2 molecules becomes more and more difficult. Besides 
that, it is most likely that some kind of lateral interactions in the adsorbed layer start to take place in the form 
of attractive/repulsive forces between CO2 molecules adsorbed on the tuff surface (adsorbate–adsorbate 
interactions) (Raganati et al., 2018). As a result, as the adsorption process proceeds, the activation energy is 
increased and the heat of adsorption is decreased.  
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Adsorption kinetics: Figure 3 presents the CO2 transient adsorption uptakes and fractional adsorption uptake 
on the tuff at different adsorption temperatures (at 10%vol. of CO2 inlet concentration), as evaluated from the 
experimental breakthrough curves. It is clear that adsorption kinetics and thermodynamics are differently 
affected by the temperature. Indeed, when temperature is increased, the CO2 adsorption becomes faster due 
to enhanced kinetics and, on the contrary, the amount of CO2 adsorbed at equilibrium is decreased due to 
thermodynamics limitation. In other words, the equilibrium CO2 adsorption capacity decreases with the 
temperature increasing, the asymptotic values reached by the CO2 uptake curves in Figure3a decreasing as 
temperatures increased, which is in line with the exothermicity of the adsorption. 

 
Figure 3: a) CO2 transient adsorption uptakes; b) CO2 fractional adsorption uptakes.  

On the contrary, higher temperatures positively affect adsorption kinetics, as it is clearly shown by the curves 
becoming steeper (Figure 3b) with increasing temperatures, in accordance with the fastened mass-transfer 
and diffusion phenomena at higher values of adsorption temperatures. Then, the pseudo-first order and 
pseudo-second order models have been used to fit the experimental data (Figure 4). Table 5 reports the 
values of the kinetic constants with the relative correlation coefficients and errors.  

 
Figure 4: Experimental (dotted line) CO2 uptake and corresponding fit to the pseudo-first (solid line) and 
pseudo-second (dashed line) order kinetic models at the lowest and highest investigated adsorption 
temperatures. 

Figure 4 clearly shows that for each investigated temperature, the pseudo-first order kinetic model fits the 
experimental data better than the pseudo-second order kinetic model does (this shows larger deviations from 
the experimental data). More specifically, the pseudo-second order model tends to underestimate the CO2 
uptake in the first few minutes (t < 5 min); in contrast, this is remarkably overestimated in the last stage of the 
adsorption process, namely as the equilibrium is approaching. As a consequence, the pseudo-second order 
model significantly overestimates the equilibrium CO2 uptake (qe) (Table 3). 

Table 3. Values of the pseudo-first order and pseudo-second kinetic model parameters and fitting comparison 

T, °C 
Pseudo-first order Pseudo-second order 
qe kf R2 HYBRID qe ks R2 HYBRID 

25 0.605 0.403 0.995 0.0672 0.734 0.516 0.987 0.111 
40 0.513 0.476 0.997 0.0636 0.607 0.766 0.988 0.109 
70 0.331 0.745 0.998 0.0432 0.372 2.173 0.989 0.084 
100 0.197 1.295 0.999 0.0294 0.212 7.372 0.995 0.067 
130 0.122 2.108 0.999 0.0244 0.129 21.052 0.996 0.047 

In contrast to this, the pseudo-first kinetic model is capable of adequately fitting the experimental points during 
the entire time evolution of the adsorption. This better quality is clearly confirmed by the data reported in Table 
3, in terms of higher values of R2 and lower values of HYBRID. These results can be ascribed to the fact that 
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that the pseudo-first order can fairly describe adsorption processes characterized by reversible 
adsorbate/adsorbent surface interactions, i.e. purely physical adsorption. On the contrary, the second-order 
kinetic model can better describe chemisorption processes, i.e. it is a better choice when it is necessary to 
account for the occurrence of chemical bonding between the adsorbate and the adsorbent surface. Therefore, 
these results are in line with those obtained from the thermodynamic study, showing that the CO2 adsorption 
on the tuff is purely physisorption. It can also be also observed that, whatever the kinetic model, the kinetic 
constant (kf and ks) increase with increasing temperatures, in line with high temperatures favoring adsorption 
(Table 3). 

4. Conclusions 
In this work CO2 adsorption on a natural tuff has been studied focusing on the thermodynamics and kinetics of 
the process. Dynamic breakthrough experiments have been performed in a lab-scale fixed bed reactor. As 
regards thermodynamics, it is oppositely affected by temperature and pressure. Indeed, when CO2 partial 
pressure is increased, the equilibrium CO2 adsorption uptake increases, whereas it decreases when 
temperature is increased. The equilibrium experimental data has been fitted by Langmuir and Freundlich 
models. The Freundlich model provides the better results in terms of fitting quality, which suggests that CO2 
adsorption on the tuff is multilayer and happens with a heterogeneous surface binding. Then, the study of the 
thermodynamic parameters has shown that CO2 adsorption on the tuff is spontaneous, exothermic and 
physical in nature. As the surface loading increases, the isosteric heat of adsorption decreases, which is a 
further confirmation of the tuff having an energetically heterogeneous surface and that some kind of lateral 
interactions take place among the CO2 molecules adsorbed on the tuff surface. Then, the pseudo-first and 
pseudo-second kinetic model have been adopted to fit the experimental data. The pseudo-first order kinetic 
model is the best one, being able to provide a better quality of the fitting all the investigated adsorption 
temperatures.  
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