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Terbuthylazine has been introduced to replace atrazine in most of the EU countries; nowadays, this herbicide 
is one of the most frequently detected in environmental waters. The persistence and the endocrine disruptor 
activity of this chemical of emerging concern have been established. Conventional treatments applied in 
drinking water plants do not lead to the complete removal of pesticides and among them, adsorption provides 
the greatest efficiency. Hydrochar obtained through the hydrothermal carbonization of sewage sludge has 
been activated and its adsorption capacity has been tested. Moreover, an innovative electrochemical reactor 
with a Solid Polymer Electrolyte (SPE) has been applied for removing terbuthylazine from an aqueous 
medium. The activated hydrochar demonstrated an adsorption capacity of 422 mg g-1, reached in 6 hours. 
Considering the reduction of the volume of sludge to be disposed of obtained if hydrothermal carbonization is 
carried out, and the thermovalorization of the exhausted hydrochar if used for pollutant removal, further 
analysis is encouraged to evaluate its effectiveness as adsorbent media in filtration vessels. Up to 88% of the 
herbicide has been completely removed by the electrolytic treatment in the first hour of treatment, while only 
1% has been converted in minor metabolites. Both the sorbent and the advanced oxidation technique 
investigated here could be applied for the removal of other pesticides and drugs metabolites in water 
treatment facilities, while the fast removal attained by the SPE technology also offers a prospective for the in-
situ remediation of pesticides-polluted groundwater. 

1. Introduction 
The triazinic ring, preserved in the terbuthylazine (TBA) structure, as well as in many of its metabolites, has 
been associated with toxicity and oestrogenicity (Pereira et al., 2015). Indeed, TBA is a chemical of emerging 
concern because of its persistence, toxicity to living organisms at low doses (Choi et al., 2012; Eullaffroy and 
Vernet, 2003)  and high long-term risks to aquatic organisms (Kock-Schulmeyer et al., 2014), mammals, non-
target plants and non-target soil macroinvertebrates (Bottoni et al., 2013). The potential risk of 
bioaccumulation is confirmed by the high octanol–water partition coefficient (Baillie, 2016). Notwithstanding 
food pollution is a well-recognized issue (Ling, 2018), there is still no information related to the impact on 
human health due to the intake of metabolites absorbed by the crops, posing a relevant gap in the impact 
assessment methods of agricultural systems (Tasca et al., 2017). 
Chlorination is widely used in drinking water plants, but only 30% of TBA was removed from natural water 
when NaClO was tested as an oxidizing agent. Adsorption on active carbon is influenced by solution pH 
(Hnatukova et al., 2011); powered active carbon was tested on polluted natural waters, attaining 60% of 
herbicide adsorption (Ormad et al., 2008). Several weeks are required to obtain more than 70% degradation in 
biofilters (Suciu et al., 2013). Hydrogen peroxide alone has no appreciable effect, as demonstrated on the 
oxidation groundwater samples (TBA concentration: 10 μg L−1) by Sorlini and co-workers (Sorlini et al., 2014). 
Direct photolysis of 5 mg L-1 of TBA in a 250 mL reactor did produce significant degradation only applying an 
UV dose of 2002 mJ cm-2, significantly higher than those commonly applied in drinking water disinfection, or 
by the addition of  H2O2 (Alvarez et al., 2016; Quinones et al., 2015; Sorlini et al., 2014). Up to 92% of TBA 
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was removed within 90 mins by photocatalytic degradation over TiO2 (1.0 g L-1) and with the addition of H2O2 
and NaBrO3 to reduce the recombination of H+ and e−. Most of the removal efficiency has been attributed to 
the interaction with hydroxyl radicals; the cleavage of the side chain is followed by the substitution of Cl atom 
by hydroxyl radicals, hydroxylation and abstraction of H atoms (Yang et al., 2016). Photodegradation of TBA 
was successfully conducted also by the use of a TiO2/chitosan thin layer; however, cyanuric acid was obtained 
as final product and this compound cannot be removed by either photolysis or photocatalytic degradation (Le 
Cunff et al., 2015). A TBA removal efficiency of 45% was reached by ozonation of natural water (Ormad et al., 
2008), while a complete destruction of the herbicide was attained within 2 h by single ozonation, O3/H2O2 
process and heterogeneous catalytic ozonation with AC, Multi Walled Carbon Nanotubes and TiO2 as 
catalysts (Alvarez et al., 2016).  Solar-driven techniques based on ozonation coupled with TiO2 photocatalysis 
have also been successfully tested, obtaining a complete removal of TBA within 90 mins (Quinones et al., 
2015).  However, by products have been barely investigated, notwithstanding the fact that some of them have 
demonstrated an oestrogenic activity comparable to atrazine (Pereira et al., 2015). Very recently, promising 
results have been obtained by electrolytic radicals production by Clematis and co-workers (Clematis et al., 
2017) and Klidi et al. (Klidi et al., 2019); however, this technology has not been investigated on the removal of 
TBA. 
Considering the proven efficiency of adsorption on activated charcoal and the promising results obtained by 
advanced oxidation techniques, these two options deserve particular attention. With regard to the former 
technique, hydrothermal carbonization (HTC) is gaining growing attention, and an activation process of the 
carbonaceous material obtained through this process could lead to the production of valuable adsorbents. 
HTC is a thermo-chemical conversion for recovery and enhancement of biomass, included sewage sludge. 
The process occurs under autogenous pressure at temperatures ranging from 180 to 250 °C in a biomass-
water mixture, resulting mainly in the formation of solid particles (hydrochar) and a liquid fraction (bio-oil mixed 
with water). Highly porous activated carbons can be produced by the activation of hydrochars; Puccini and co-
workers recently developed an activated carbon using hydrochar from green waste as precursor, with a BET 
surface area of 1739 m2 g-1, which demonstrated up to 97.9 % removal efficiency when tested on an aqueous 
solution of atrazine (Puccini et al., 2018).  Regarding advanced oxidation techniques, oxidants needs to be 
produced in-situ in water treatments plants, due to its limited half-life. Electrolytic production of oxidants avoids 
the transportation of potentially dangerous chemicals, and no outside contamination is introduced in the 
system, as the source of oxidants is the treated media itself. Moreover, the oxidant is dissolved in water as 
soon as it is formed, resulting in a minimum amount of equipment required for the process (Stanley, 2004). 
This paper describes the activation process of a hydrochar obtained from the hydrothermal carbonization of 
sewage sludge and explores its adsorption performance through the removal of TBA from an aqueous 
solution. Moreover, an electrochemical reactor equipped with a solid polymer electrolyte (SPE) has been 
tested with the same scope, focusing also on the by-products generated. 

2. Experimental 
2.1 Materials 

Hydrochar obtained from hydrothermal carbonization of sewage sludge has been used as the precursor for 
the preparation of active carbon. Potassium hydroxide (KOH - Sigma Aldrich Co. Llc, Analytical grade 
chemicals) has been used as the activating agent. Terbuthylazine (PESTANAL, Analytical standard) has been 
supplied by Sigma Aldrich Co. Llc. 

2.2 Hydrochar activation and characterization 

Hydrochar samples have been dried at 105 °C for 24 h, then crushed and sieved to particle size minor than     
75 µm. The so-obtained powder has been mixed with potassium hydroxide at a ratio hydrochar / KOH = 0.5. 
The mixture has been placed in oven at a 650 °C for 150 min, under nitrogen flow (180 mL min-1) and cooled 
down at a ramp of 5 °C min-1. The obtained samples have been washed with HCl 5 M and then with distilled 
water, to remove the acid. Proximate analyses have been conducted according to the recent work of Puccini 
et al. by using a thermogravimetric analyser (TGA Q500 TA Instruments) (Puccini et al., 2018). Activated 
samples have been heated from 30 to 900 °C at a ramp of 20 °C min-1, under nitrogen flow (100 vol%), to 
measure moisture and volatile matter content. Then, the temperature has been decreased to 800 °C and the 
gaseous flow was switched to air, with the aim to measure fixed carbon and ash content. 

2.3 Adsorption tests 

An aqueous solution of 4 mg/L of terbuthylazine has been maintained under stirring in an open container, at 
room temperature, for 24 h, after the addition of 3 mg of the activated hydrochar. Experiments have been 
carried out at room temperature (approximately 20 °C). Tap water has been used to prepare the solution 
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analysed, with the aim to obtain results more representative of a plant inlet stream. The procedure has been 
repeated using a sample of the virgin hydrochar, to estimate the effect of the activation process on the 
adsorption capacity of the material. Hydrochar samples have been meshed and a granulometry between 63 
and 212 µm has been selected for the adsorption tests. A spectrophotometer Shimadzu UV-1700 
PharmaSpec has been used to measure the aqueous concentration of the herbicide. 

2.4 Electrolytic reactor 

The tests have been carried out in an open glass reactor. A 300 mL solution of 4 mg of terbuthylazine has 
been continuously stirred for 1 hour and electrolysis has been operated at galvanostatic condition. The 
herbicide has been dissolved in tap water for the same reason explained in Section 2.2. A constant current of 
100 mA was applied. A Nafion® N324 ion exchange membrane, sandwiched between a Nb/Boron-Doped 
Diamond mesh anode and a Ti/RuO2 mesh electrode (Figure 1), was immersed in the aqueous media. Details 
of the apparatus are described in the recent works of Clematis (Clematis et al., 2017) and Klidi (Klidi et al., 
2019). The aqueous concentration of the terbuthylazine and treatment intermediates have been measured by 
using a GC-MS spectrophotometer. The choice of gas chromatography was due to the purpose of 
investigating the formation and the evolution of minor metabolites along the treatment, which was expected to 
be below the limit of detection of a UV-Vis spectrophotometer. 

 
  
Figure 1: Detail of the electrolytic reactor (Clematis et al., 2017) 

3. Results 
3.1 Hydrochar activation and adsorption tests 

The yield of the activation step of hydrochar obtained from sewage sludge was 21.17 %. The results of the 
thermogravimetric analysis are presented in Table 1: the activation phase considerably reduces the 
percentage content of moisture, volatile matter and ash. Values are expressed as weight percentage dry 
based. 
The enhanced porosity of the activated material is ascribed to the reaction of KOH with C under inert 
conditions, which causes the development of different potassium species (K2O, K, K2CO3) during the 
activation step. The diffusion of these species into the hydrochar framework likely widens the existing pores, 
leading to a well-developed micropore structure, as recently confirmed by Scanning Electron Microscope 
images of activated hydrochars obtained from green waste (Puccini et al., 2018). Hence, enhanced adsorption 
capacity is expected by the activated material, if compared with the virgin hydrochar. 
Figure 2 shows the results of the adsorption batch tests. The virgin hydrochar adsorbed 219 mg g-1, reaching 
70 % of its adsorption capacity in the first 30 min. The activated material exhibited a specific uptake of      
422 mg g-1, with most of the removal attained in the first 95 min. The maximum removal was reached within 
the first 6 h, for both the samples tested.   
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Table 1: Proximate analysis of the hydrochar and activated hydrochar sample                                                                                 

Proximate analysis parameters Hydrochar (wt%)* Activated Hydrochar (wt%)* 

Moisture 1.69 5.36 
Volatile matter 55.91 21.94 
Ash 38.31 26.03 
Fixed carbon 4.09 46.67 

* dry basis 

3.2 Electrolytic radicals production 

Notwithstanding the very low value of the electric current applied, 61 % of terbuthylazine has been removed 
by electrolytic radicals production in the first 30 mins of treatment. The main removal mechanism is ascribed 
to the action of the hydroxyl radicals produced at the anode surface. The rate of removal decreased in the 
following mins, and 89 % of the herbicide disappeared at the end of the treatment, as it can be seen in Figure 
3. However, as discussed in Section 1, the disappearance of the target substance can be due only to its 
conversion in a chemical with similar toxicity or accompanied by the generation of significative amounts of by-
products with proven or unknown associated risk for humans and wildlife. Hence, the efficiency of the 
proposed treatment cannot be discussed only by its removal rate. Treatment metabolites and respective 
concentrations have been identified and reported in Table 2. 

Table 2: Terbuthylazine and treatment intermediates. detected by GC-MS. 

Time (min) 0 30 45 60 
Terbuthylazine (μg L-1) 3780 1474 722 426 
2-chloro-4-amino-6-terbuthylamino-1,3,5-triazine (μg L-1) 2 42 41 35 
2-chloro-4,6-amino-1,3,5-triazine (μg L-1) 0 0 0 2 
2-chloro-4-ethylamino-6-amino-1,3,5-triazine (μg L-1) 0 1 1 1 
2-chloro-4-acetamido-6-terbuthylamino-1,3,5-triazine (μg L-

1) 
0 5 5 5 

 
The oestrogenic activity of these substances has been recently confirmed by Pereira and co-workers by yeast 
oestrogen screen tests (Pereira et al., 2015). The main by-product found was 2-chloro-4-amino-6-
terbuthylamino-1,3,5-triazine, also known as desethylterbuthylazine, which is one of the most detected 
compound in many European surface waters and groundwaters (Tasca et al., 2018). The proposed technique 
is highly effective, as the disappearance of terbuthylazine is accompanied only by the generation of a very 
small amount of treatment intermediates, less than 1% of the initial herbicide concentration. Electrolytic 
radicals productions partially degraded the desethylterbuthylazine formed in the first 30 mins, while it had no 
discernable effect on the other metabolites detected.  
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Figure 2: Terbuthylazine adsorption on virgin and activated hydrochar 
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 Figure 3: Terbuthylazine detected at different treatment times. Applied current: 100 mA 

4. Conclusions 
Hydrochar obtained by the hydrothermal carbonization of sewage sludge has been activated and tested for 
the adsorption of the herbicide terbuthylazine. The removal of the herbicide was carried out also by the use of 
an innovative electrochemical cell. equipped with a solid polymer electrolyte.  
The developed sorbent revealed a good adsorption capacity, as 86 % of terbuthylazine have been removed 
from the polluted media within less than 2 hours. Regeneration options may be explored and compared with 
new hydrochar production and activation, coupled with the thermovalorization of the exhausted sorbent. The 
electrolytic cell provided an 89 % abatement in 1 hour of treatment, with low energy requirements, no need of 
additional chemicals and no waste generation. Moreover, the removal of terbuthylazine is not due to its 
conversion in a chemical with similar toxicity and it is not accompanied by the generation of a significative 
amount of toxic by-products. Even considering the same target, i.e.: pesticide removal from water, technical 
and economic issues need to be evaluated by a case-specific approach. The use of hydrochar-based active 
carbon offers good adsorption capacity and well fits the circular economy approach, while electrolytic radicals 
production provides a fast abatement with no need for additional operations as filter backwashing and sorbent 
regeneration. The latter technique would likely be more efficient on highly contaminated streams, due to its 
electricity requirements. 
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