




 
The Feedforward ANN was used to develop the first model studied. Table 1 shows several topologies with one 
and two hidden layers were heuristically tested. 

Table 1:  Several topologies tested with one and two hidden layers for Feedforward ANN 

Model 
Hidden layer 1 Hidden layer 2 

Training 
algorithm R RMSE 

Neurons Activation 
Function Neurons Activation 

Function 

ANN1 6 tansig - - trainbr 93.80 3.12E-02 
ANN2 6 tansig - - trainlm 64.16 3.28E-02 
ANN3 6 logsig 6 logsig trainbr 86.84 2.77E-02 
ANN4 6 logsig 6 tansig trainlm 94.20 2.69E-02 
ANN5 8 logsig - - trainlm 82.71 2.85E-02 
ANN6 10 logsig 8 tansig trainlm 84.14 2.38E-02 
ANN7 8 logsig 10 tansig trainlm 87.02 2.33E-02 
ANN8 12 logsig - - trainbr 76.27 2.87E-02 
ANN9 10 tansig 8 tansig trainlm 85.89 2.61E-02 

ANN10 10 logsig 8 logsig trainlm 92.27 2.48E-02 
ANN11 25 tansig - - trainbr 67.70 2.80E-02 
ANN12 20 logsig 20 tansig trainlm 81.04 2.44E-02 

 
In this model, the use of a large number of neurons in the hidden layers did not provide an improvement in the 
R. However, the use of the second hidden layer was efficient in order to obtain a lower RMSE. Figure 2 
presents the coefficient of correlation for the topology ANN4, best suited to the problem, as well as the 
behaviour of the predicted response with respect to the experimental response. This topology presented 6 
neurons in the first hidden layer and 6 neurons in the second hidden layer. The activation functions used were 
logsig and tansig, respectively and the training algorithm used was trainlm. This model presents R equal to 
94.20% and RMSE of 2.69x10-2. 

 

Figure 2. Regression diagram for the Feedforward ANN4 test step (a) and representation of the behaviour of 
the predicted data in relation to the experimental data of each sample (b) 

In parallel, the Elman ANN was used to develop a second neural model. Table 2 shows several topologies 
with one and two hidden layers were heuristically tested. 
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Table 2:  Several topologies tested with one and two hidden layers for Elman ANN 

Model 
Hidden layer 1 Hidden layer 2 

Training 
algorithm R RMSE 

Neurons Activation 
Function Neurons Activation 

Function 

ANN1 6 tansig - - trainlm 94.20 3.39E-02 

ANN2 6 tansig - - trainbr 70.92 3.62E-02 

ANN3 6 logsig 6 logsig trainlm 87.87 2.93E-02 
ANN4 6 tansig 6 logsig trainlm 93.04 3.14E-02 
ANN5 8 logsig - - trainlm 91.12 3.43E-02 

ANN6 10 logsig 8 tansig trainlm 92.68 2.93E-02 
ANN7 8 logsig 10 tansig trainlm 86.30 2.96E-02 
ANN8 12 logsig - - trainbr 80.20 3.34E-02 

ANN9 10 tansig 8 tansig trainlm 52.62 2.99E-02 
ANN10 10 logsig 8 logsig trainlm 77.85 2.79E-02 
ANN11 25 tansig - - trainbr 91.92 3.11E-02 

ANN12 20 logsig 20 logsig trainlm 87.97 3.00E-02 

 
In this model, as in the previous case, the use of a large number of neurons in the hidden layers did not 
provide an improvement in the R. The use of the second hidden layer was efficient in order to obtain a lower 
RMSE. However, is observed a diminution in the R value. Figure 3 presents the coefficient of correlation for 
the topology ANN1, best suited to the problem, as well as the behaviour of the predicted response with 
respect to the experimental response. This topology presented 6 neurons in the hidden layer. The activation 
function used was tansig and the training algorithm used was trainlm. This model presents R equal to 94.20% 
and RMSE of 3.39x10-2. 
 

 
Figure 3. Regression diagram for the Elman ANN1 test step (a) and representation of the behaviour of the 
predicted data in relation to the experimental data of each sample (b) 
 
In the Feedforward and Elman ANN models, the prediction behaviours seen in Figure 2(b) and Figure 3(b) did 
not show a good correlation with the experimental data. However, the trend of observed experimental 
behaviour was followed and, in a process with a big data scenario, these results are satisfactory. 
As well as the ANN models, the ANFIS model also concerned the prediction of polystyrene density behaviour. 
Figure 4 shows the coefficient of correlation for this model and the behaviour of the predicted response with 
respect to the experimental response. In this model, the Gaussian curve membership function with 4 rules was 
obtained (the logical operation is and), presenting R equal to 91.03% and RMSE of 0.2123.  
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Figure 4. Regression diagram for the ANFIS model test step (a) and representation of the behaviour of the 
predicted data in relation to the experimental data of each sample (b) 

It is important to emphasize that the ANFIS model presented a distinct dynamic of the neural models. While 
the ANN models best fit the data at the upper end of the curve, the ANFIS model presents better fit in the 
inflection region of the experimental curve. 
Figure 5 presents the best topologies used in all studied models. Figure 5(a), 5(b) and 5(c) represent the best 
topologies to Feedforward ANN, Elman ANN and ANFIS model, respectively.  

 
 
Figure 5. Best topologies to Feedforward ANN (a), Elman ANN (b) and ANFIS model (c).  

Few studies report the use of ANN as a tool for the construction of prediction models in the polymer industry. 
In Altarazi et al. (2018), Feedfoward ANN was used to predict and optimize three properties (tensile strength, 
ductility and density) of PVC composites. There are no reports of work on the use of Elman ANN and ANFIS 
as tools to model the behaviour of polystyrene density. Studies in this area are relevant, since the developed 
models allow the prediction of the final properties of the polymers. With models, it is possible to construct 
response surfaces from which optimal conditions can be inferred to achieve higher yield and product quality. 

4. Conclusions 

The ANN and ANFIS models presented good prediction efficiency with RMSE values close to 0 and R values 
close to 1. The Feedforward ANN for polystyrene density behaviour prediction had a better performance when 
compared with the others. The model developed with Feedforward ANN presented two intermediate layers, 
while the model developed with Elman ANN presented satisfactory using only one intermediate layer. 
However, even with distinct topologies, these models showed trends of predictions very similar with R of 
94.2%. The ANFIS model, on the other hand, was not shown to be the most suitable for predicting the 
polystyrene density in the process, presenting R of 91%. It is important to note that the polystyrene density is 
a value that corrects itself ahead throughout the time. Thus, it is recommended to use time series to predict 
this variable, as well as to use a more appropriate ANN type, such as the NARX ANN. 
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