






  

Figure 2. XRD spectrum of PtRh nanocomposite 

            

Figure 3. TEM images of PtRh nanocomposite at different magnifications 

The cyclization to isoindolinone was easily investigated by the help of an on-line mass spectrometer (MS) 
analysis, which allow contemporaneous evolution of the reaction media and of the Farad per mole required. 
For this purpose, the electrochemical cell was connected to an on-line MS, see Scheme 2, permitting to 
monitor the required amount of electrons.  
The electrochemical synthesis was performed with different cathodes and anodes. The results show that by 
using a platinum cathode, the reaction proceeds in presence of different anode materials. On the other hand, 
different cathodes materials lead to different results. It is worth noticing that, although the theory requires only 
1 Fmol-1 of electricity for the oxidation of one electron, even with 4 Fmol-1 the reaction did not go to completion 
with Pt cathode (see Figure 3). This is true for the PtRh electrode, which shows a complete conversion at 4 
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Fmol-1. Thus, the materials of cathode largely impact the reaction more than the working electrode (anode). 
This can be attributed to the water reduction reaction occurring at the cathode, i.e. to the different activation 
overpotential for hydrogen evolution on different electrode materials (Washburn, 1926). Indeed, the activation 
overpotential is lower for PtRh (0.001 V) than for Pt (0.02 V). 
During anodic oxidation, bases can be used to favour compounds or its oxides deprotonation, this is because 
of most anodic oxidations proceed through the loss of electrons and protons. Different organic bases were 
investigated in the flow cyclizations (Figure 4). Triethylamine inhibited the reaction while with 2,6-lutidine 
conversions similar to those without base were observed. To accelerate the reaction, 
benzyltrimethylammonium hydroxide was used. Cyclic voltammetry, not shown here, confirmed this result, as 
the cyclic voltammogram in the presence of benzyltrimethylammonium hydroxide shows a lower oxidation 
potential (from 1.65 V to 0.18 V, vs. SCE). The oxidation potential of triethylamine is much lower than of 1, so 
it will be oxidized first, and the starting material remains unreacted. The oxidation potential of 1 after addition 
of 2,6-lutidine remains practically unchanged. 

 
 

Figure 3. Conversion obtained with Pt and PtRh electrode at 4 Fmol-1 

 

Figure 4. Base screening 

It was found that to complete the reaction only 0.5 equiv of base are needed, while complete conversion was 
not achieved with smaller base loading. It is worth noting the lower amount of base required for the flow 
system if compared with batch conditions, while the base can be easily removed through aqueous work-up. 
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4. Conclusions 
In this paper, in order to improve the hydro-hydroxide generation during electrolysis for carbamate 
deprotonation process, PtRh nanocatalyst, by an efficient and facile one pot synthesis process, was prepared. 
The formation of an alloy consisting of Pt and Rh was confirmed by XRD analysis. TEM analysis showed the 
formation of very small nanoparticles with an average diameter of about 1–3 nm. The result of the EDS 
analysis confirmed a Pt/Rh atomic ratio in line with the percentages of Pt and Rh in the precursors chosen for 
the synthesis. Complete conversion to isoindolinone was found at 4 Fmol-1 with the prepared catalyst, which 
works better than Pt cathode. The role of the base was also explored and elucidated. 
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