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The production of hydrogen through photoreforming of aqueous solutions of organic compounds is considered 
as a way to exploit solar energy storage in the form of hydrogen. The photocatalytic reforming can be 
promoted by a photocatalyst, optimally a solid semiconductor able to absorb the major quota of solar energy. 
In this work, glucose was used as a model substrate for photoreforming, possibly derived from the hydrolysis 
of waste biomass. The selected photocatalysts were based on TiO2. The materials were prepared by different 
methods, e.g. flame spray pyrolysis, precipitation and in mesoporous form through soft template synthesis, 
and compared with commercial samples of nanostructured TiO2 P25 by Evonik. 0.1 mol% Pt was also added 
as co-catalyst. The role of the metal was that of electron sink, to inhibit the recombination of the electron/hole 
couple obtained through light absorption.  
The photoreforming reaction was carried out in different prototypes of photoreactors, specifically developed 
and optimised. In one reactor configuration, an external 200 W lamp was used, with emission wavelengths 
centred around 365 nm. A first photoreactor was developed with internal capacity ca. 0.3 L, with big head 
space for gas collection and very efficient mixing of the suspension thanks to an optimized length/diameter 
ratio (L/D) ca. 2. A drawback was the poor irradiation efficiency of the suspension, which limited the overall 
productivity, irrespectively or the substrate. A different home-designed photoreactor was equipped with an 
immersion lamp, coaxial with the reactor. Two reactor sizes were tested, 0.3 L or 1.5 L. A significant amount of 
H2 was obtained with these very simple catalyst formulations, up to 14.7 mol kgcat

-1 h-1 over the Pt/TiO2 sample 
and using glucose as substrate. This result is very remarkable with respect to conventional photoreactors. 

1. Introduction 

Nowadays, ca. 100 million metric tons of hydrogen are produced worldwide (Armaroli & Balzani, 2011), which 
is less than 3 % of the world’s primary energy demand and more than 95% derives from fossil sources. A 
growing search for clean energy vectors, such as H2, exploded in recent years, including the investigation on 
solar based production of hydrogen. The first photocatalytic method for H2 production was the solar water 
splitting proposed by Fujishima and Honda in the 1970s (Fujishima & Honda, 1972). The main drawback is 
that this process is thermodynamically limited by the high Gibbs free energy required to split water into its 
constituting elements (237 kJ/mol = 1.23 eV) and the rapid recombination of the produced H2 and O2. This 
latter point introduces additional complications to photoreactors design, requiring separate compartments for 
the evolution of the two products, which increases the kinetic losses. The photocatalytic activity is based on 
the use of semiconductors that, upon irradiation with energy larger than the band gap, promote an electron 
from the valence to the conduction band. The efficiency of the catalyst strictly depends on its light-harvesting 
properties and on the capacity to preserve the hole/electron pair from recombination.  
The oxidation of water by holes is by far the slowest half reaction, so a sacrificial organic compound is often 
added, called Hole Scavenger (HS). Besides accelerating the reaction, a further advantage is that CO2 is 
formed from HS oxidation instead of O2, avoiding its recombination with H2 and allowing the use of single 
compartment reactors. This route is conventionally called photoreforming (PR) and finds a particularly 
interesting application when waste organics are used as HS. The general stoichiometry is the following: 

CxHyOz + (2x − z) H2O → x CO2 + (2x − z + y/2) H2      (1) 
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PR can be used to clean waste water derived e.g. from food, wine or paper industry (Linsebigler  & al. ,1995; 
Gomathisankar & al., 2016; Rossetti, 2012) using solar energy and coupling H2 production as an added value. 
TiO2 is the semiconductor most used in photocatalysis because it is widely available, non-toxic and 
inexpensive, though its efficiency is very poor with solar radiation since it absorbs in the UV range, which 
constitutes ca. 5 % of the solar spectrum. TiO2 has been used in this work, prepared by different methods, i.e. 
in dense nanoparticles form through flame spray pyrolysis (FSP (Chiarello & al., 2007a; Chiarello & al., 
2007b), in microporous form by precipitation, in mesoporous form by soft template synthesis (Freyria & al., 
2017) and compared with a commercial nanostructured compound (Evonik P25). Glucose has been used as a 
model molecule to represent the case of carbohydrates rich solutions obtained by hydrolysis of waste 
cellulose or lignocellulosic biomass. 
While considerable attention is devoted to the development of innovative photocatalysts, the investigation on 
the role of the photoreactor and light distribution inside it is much lower (Heggo & al., 2017; Ola & Maroto-
Valer, 2016; Rossetti & al., 2017; Rossetti & al., 2018). To contribute to fill this gap, we have compared the 
performance of three reactors for the photoreforming of glucose over a commercial TiO2 catalyst. The effect of 
the lamp location in the reactor (co-axial immersed lamp or external irradiation from top) and of different TiO2 
samples was investigated, considering H2 productivity and organics conversion. 

2. Materials and experimental apparatus 

Photocatalysts 
Aeroxide TiO2, P25 (Evonik) is one of the most used types of titania for its high activity. P25 is composed by 
anatase (78-85 %) and rutile (14-17 %) phases, plus an amorphous phase (0-13 %) (Ohtani & al., 2010). The 
specific surface area (SSA) is ca. 48 m2/g and the particle size is nanometric (< 100 nm). 
A mesoporous titania sample (called meso) was prepared by sol-gel from two solutions: Solution (A), prepared 
by drop-wise addition of 5.0 g Ti(OBut)4 to 30.0 mL of an aqueous solution of acetic acid (20 vol%) and by 
vigorous stirring for about 4h at room temperature (r.t.); Solution (B), obtained by mixing 3.0 g Pluronic P123 
and ca. 20.0 mL ethanol. Then the solution (B) was added to the solution (A) using a dropping funnel. The 
obtained mixture was sealed and stirred for 24 h at r.t, then left in an oven at 85 °C for 48 h inside a Teflon 
autoclave. The precipitate was filtered, dried at 80 °C and calcined at 450 °C in air for 4 h (Freyria & al., 2017).  
A comparative microporous sample (named prec) was prepared by precipitation of TiOSO4•xH2SO4•yH2O in 
NaOH followed by calcination at 400 °C in airflow (Trevisan & al., 2014). 
Flame spray pyrolysis is an innovative technique to synthesize high surface area solid oxides in a single step. 
The apparatus is extensively described elsewhere (Compagnoni & al., 2016) and essentially is based on a 
home-developed burner, fed with 4.4 mL/min of the oxide precursor solution and with 5 L/min of oxygen. The 
pressure drop at the burner nozzle is set at 1.5 bar. TiO2 (named FSP) was produced from titanium 
isopropoxide as precursor dissolved in a volumetric flask with o-xylene and propionic acid (Chiarello & al., 
2007a; Chiarello & al., 2007b).   
Pt was loaded on the P25 sample by wet impregnation. The semiconductor (3 g) was suspended in milliQ 
water under vigorous stirring. Then the desired amount of metal precursor (Pt acetylacetonate, ≈ 15 mg) was 
added, corresponding to 0.1 mol%. The solution was kept under stirring at r.t. for 2 h and then the solvent was 
removed by evaporation at reduced pressure (40 °C). The collected powder was dried in an oven at 100 °C 
overnight and then reduced in a tubular oven at 700 °C under flowing H2. A preliminary Temperature 
Programmed Reduction experiment determined the reduction temperature. 
The structure of the catalysts was characterised by XRD (Phillips P3020), the textural properties by 
adsorption/desorption of N2 at 77 K (Micromeritics ASAP2020), the band gap was estimated by DR-UV-Vis 
(Perkin Elmer Lambda35). 
Photoreactors and testing conditions 
For this work, three different types of photoreactors have been used (Figure 1). Reactor #1: AISI 316 stainless 
steel cylinder-shaped reactor with a cooling/heating jacked (Galli & al., 2017). Reactor volume is 1.7 L with a 
net capacity of 1.3 L. A co-axial quartz candle holds the UV lamp, a medium pressure 125 W mercury vapour 
lamp, emitting in the wavelength range between 254 and 364 nm. Lamp power is periodically checked using a 
photo-radiometer (Delta OHM HD2102.2), sensitive in the range 315-400 nm. The average irradiance 
measured during the time ranged from 150 to 175 W/m2 during the testing campaign. 
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Figure 1: Photoreactors sketches. 
 
Reactor #2: has a cylindrical shape with a heating/cooling jacket, with volume 300 mL and holds a co-axial 
lamp, similar to Reactor #1, but with one bulb only. It also has two branches: one for gas blowing that is 
directly connected to the helium line and for the manual liquid phase sampling; and the other one for gas 
output and gas phase analysis. The average irradiance measured was ca. 45 W/m2. 
Reactor #3: has the same structure and volume of Reactor #2, but it is irradiated from the top through a quartz 
window of 1 cm thickness, using a UVA lamp (Jelosil, HG 200 L) with maximum emission at 365 nm. The 
average irradiance measured was ca. 75 W/m2, ranging from 50 to 100 W/m2 depending on the distance from 
the lamp. All the reactors allowed gas inlet to remove air before the analysis and sampling places for the gas 
and liquid phase. A gas chromatograph (Agilent 7890) was used for the quantification of H2, CH4, CO, CO2 

and polar/non-polar light gases. COD - chemical oxygen demand - analysis was used to quantify the 
concentration of organic molecules in the sample through their complete oxidation with K2Cr2O7 in an acidic 
environment at 130 °C for 30 minutes. The amount of reacted Dichromate, correlated to the residual organic 
fraction, is determined by spectrophotometric analysis of the produced Cr+3 ions with a Perkin Elmer Lambda 
35 spectrometer at 605 nm. TOC - total organic carbon - analysis measured the organic carbon in the sample 
by its conversion into CO2, then measured thanks to a detector (IR, FID or TCD). A Shimadzu Dry Combustion 
TOC was used, operating at 680 °C with a Pt supported catalyst.  
The procedure to load the reactor was the same for all reactors, except the solution volume. The tests were 
carried out on 5 g/L solutions of glucose, after suspension of 0.25 g/L of the photocatalyst, setting the 
temperature at the desired value (80 °C for reactors #1 and #3, 60 °C for reactor #2) and degassing the 
system by bubbling inert gas for 30 min at r.t.. The sampling of the gas phase was carried out before the test 
to check the air elimination. The three samples of the liquid phase were used to assess the glucose 
concentration at time 0. Finally, the lamp is turned on for 5 h, sampling the gas phase sample every hour for 
GC analysis. At the end of the test three samples of the liquid phase were taken and analysed for organics 
conversion (by COD/Dry TOC). 

3. Results and Discussion 

Effect of Photocatalyst formulation 
The differently prepared TiO2 samples were characterized by different phases composition. In particular, both 
the samples prepared by flame synthesis, the home-prepared FSP and the P25 commercial one, were 
constituted of a mixture of the anatase and rutile phases, the latter more evident for sample FSP in reason of 
the higher preparation temperature, which can also explain the slightly bigger particle size. By contrast, both 
the Meso and Prec samples were constituted by the pure anatase phase, with very similar particle size. The 
SSA was comparable for the P25, FSP and Meso samples, while it was almost double for the catalyst 
prepared by precipitation due to microporosity. The addition of Pt by wet impregnation did not change the 
physical properties of the P25 sample appreciably, except some sintering due to the high-temperature 
reduction, while it significantly decreased the band gap from 3.3-3.4 to 3.1 eV. This can be attributed to a 
surface plasmonic contribution due to the metal. 
Photocatalytic testing has been performed on the different samples and photoreactors according to a 
previously optimized protocol (Rossetti & al., 2015). Accordingly, a reaction temperature of 80 °C, the glucose 
concentration of 5 g/L and catalyst concentration of 0.25 g/L were selected for all tests, except with 
photoreactor #2, where the heating jacket allowed to stably fix the temperature up to 60 °C, only. 
Two blank tests have been carried out, without the photocatalyst to exclude direct photolysis and under dark 
conditions to exclude a pure catalytic reactivity. In both cases, no H2 production was observed. A third tests 
without glucose as HS excluded a significant effect of direct water splitting, H2 productivity being not 
significant, though not nil. 
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Table 1: Main physical-chemical properties of the TiO2 materials. 

Sample P25  FSP Meso Prec Pt/P25 
Anatase / Rutile (%) 78/22 65/35 100/0 100/0 87/13 
Particle size (nm) 15 23 19 17 21 
SSA (m2 g-1)  45 67 57 114 55 
Total volume of pores (cm³ g-1) 0.11 0.14 0.07 0.45 0.32 
Band Gap energy (eV)  3.41 3.31 3.41 - 3.12 
Reduction temperature (°C) - - - - 700 

Table 2: Photocatalytic testing for the photoreforming of glucose. 

Reactor Average irradiance 
(W/m2) 

Sample H2 productivity 
(mol/kg h) 

C conversion  
(%) 

#1 150-175 P25 1.910 20.3 
#1 150-175 FSP 1.195 8.5 
#1 150-175 Meso 0.918 - 
#1 150-175 Prec 0.623 5.7 
#1 150-175 Pt/P25 14.7 25.7 
#2 45 P25 1.643 17.1 
#3 75 Pt/P25 3.122 11.2 

 
The productivity of H2 was higher for the mesoporous sample (Meso) than for the microporous one (Prec), in 
spite of the much higher surface area of the latter. This was attributed to the larger pores size of the 
mesoporous sample, which allowed faster diffusion of the reactant and thus better catalyst utilization factor 
with respect to the microporous one. However, higher productivity was achieved with the P25 sample, 
followed by FSP. Their higher activity was attributed to the presence of two polymorphs of TiO2, which allow a 
fast local charge transfer between anatase and rutile allowing charge segregation and the consequent 
increase of their lifetime. The FSP sample was less active due to the presence of some carbonaceous residue 
deriving from its preparation from organic precursors, which act as defects for charge recombination, lowering 
the activity. 
The conversion of the carbonaceous substrate follows the same reactivity order. The products distribution for 
the different samples is reported in Figure 2, which shows that part of the carbonaceous skeleton of the 
substrate is mineralized by reforming to H2 + CO/CO2, while some C2 product like C2H4 or C2H6 may evolve. 

 
Figure 2: Products distribution for the comparison of different photocatalysts using Reactor #1. 
 
If pure H2 is needed, the best solution is, of course, the use of the P25 catalyst, but if the scope is the 
production of a gaseous fuel mixture, the possibility to exploit also ethane and ethylene allows to increase the 
efficiency of the process. Indeed, the amount of stored energy in the gas phase (calculated according to the 
Higher Heating Value of each compound (Green & Perry, 2008)) amounts to 167 kJ/h kgcat for the P25 
catalyst, increasing to 2,440, 3,467 and 1,825 kJ/h kgcat for samples FSP, Meso and Prec, respectively. 
The addition of 0.1 mol% Pt to P25 further boosted H2 productivity to 14 mol/h kgcat that is one of the best 
results available in the literature for this reaction. The co-production of 0.303 mol/h kgcat of ethylene and 0.952 
mol/h kgcat of ethane was also visible, for a total 6,113 kJ/h kgcat energy storage. 
Effect of reactor design 
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Different photoreactors have been compared for this reaction. Reactor #1 has a cylindrical shape, holds ca. 
1.3 L of suspension and has a co-axial immersion lamp. Reactor #2 shares with #1 the same geometry and 
diameter length ratio, but has lower capacity, 0.3 L. The smaller size of reactor #2 suggests the use of a lower 
power of the lamp to avoid overheating (ca. 45 W/m2 average irradiance to be compared with more than 150 
W/m2 of reactor #1) and taking advantage to the location of the suspension nearer to the light source. 
Reactor #3 is instead characterized by an external lamp, located on the top of the reactor. This configuration 
imposes a mono-directional irradiation top-down, with an intensity almost linearly decreasing with the distance 
from the source. External irradiation is believed typically as less effective than the internal one, but it is more 
easily amenable to scale up and use with natural irradiation with solar light.  
Testing of sample P25 in reactor #2 returned 14 % lower productivity of H2 than with reactor #1, but with a 70 
% reduction of the irradiance. Therefore, the shorter optical path in reactor #2 was the key to guarantee an 
overall high efficiency of this photoreactor. On the other hand, reactor #3 led to ca. 3 mol/h kgcat of H2 
productivity for sample 0.1 mol% Pt/TiO2, with respect to 14.7 mol/h kgcat obtained with reactor #1, in line with 
a less efficient light distribution through longitudinal irradiation with respect to the radial one. Also, in this case, 
the lamp power was halved for reactor #3 (75 W/m2) with respect to reactor #1, but the decrease of 
productivity was much worse than the decrease of irradiance. Thus, in order to increase the effectiveness of 
the photoreactor, the optimization of the light distribution pattern and the distance from the source prevail over 
the use of an intense light source.The efficiency of the process can be quantified by two indexes. Efficiency 1 
has been calculated from the Higher Heating Values (HHV) of all the compounds, products and reactant 
(Green & Perry, 2008). It represents the percentage of the original energy content of glucose, stored as 
gaseous fuel after the photocatalytic treatment. This kind of efficiency allows comparing the valorization of 
valuable compounds as such or as substrates for photoreforming, provided that the reactant can be exploited 
valuably in different ways. This is probably not the case of waste organic-containing solutions, but may fit the 
hydrolysis of raw biomass that can be valorized elsewhere. Efficiency 2, instead, represents the percentage of 
the irradiating power stored in the gas phase products. Both the parameters are reported in Table 3. 

Table 3: Efficiency of energy storage as gas phase products. 

Reactor Sample H2 prod. 
(mol/kgcat h) 

C2H4 
(mol/kgcat h) 

C2H6 
(mol/kgcat h)

Stored energy 
(kJ/kgcat h) 

Efficiency 1 
(%) 

Efficiency 
2 (%) 

#1 P25 1.91 - - 546 4.3 0.39 
#1 FSP 1.195 0.107 1.249 2287 18.1 1.62 
#1 Meso 0.918 0.426 1.672 3262 25.8 2.31 
#1 Prec 0.623 0.109 0.958 1708 13.5 1.21 
#1 Pt/P25 14.7 0.303 0.952 5997 47.4 4.24 
#2 P25 1.643 - - 470 21.2 4.58 
#3 Pt/P25 3.122 - - 893 61.4 35.11 

 
The overall amount of stored energy depends on products distribution, remaining below 1 MJ/h kgcat when the 
only fuel produced in the gas phase is H2, to much higher values when also C2 products are present. 
Efficiency 1 also depends on the products distribution and, for the same reactor #1, sharply increases when C-
containing byproducts are exploitable in the gas phase. When only H2 is present, only 4.3 % of the energy of 
the substrate is recovered after 5 h in the gas phase, notwithstanding the highest productivity of catalyst P25 
for H2. Likely longer reaction time would be needed to fully convert to remaining organic compounds in the 
liquid phase. The efficiency dramatically improved with the Pt-promoted sample, reaching almost 50% of the 
original heating power of the reactant recovered as product. Efficiency 2 follows substantially the same trend 
and reaches a maximum of stored power of ca. 4.2 %. This result is of course not economically valuable for an 
artificially irradiated photoreactor, but it can turn into a satisfactory goal if (free) solar energy can be exploited 
in the same way. The same efficiency was obtained with reactor #2 by using a much cheaper commercial 
photocatalyst, while the highest value was achieved with reactor #3. This exceptionally high efficiency, in spite 
of lower H2 productivity, is explainable from the small area subject to irradiation (one order of magnitude lower 
than for the other two reactors), but it is anyway interesting to exploit future reactor designs with much larger 
windows, thus enhancing light exposure. 

4. Conclusions 
The photoreforming of glucose has been studied as a route for the production of H2 from solar energy and the 
valorisation of waste or biomass-derived aqueous streams. Different catalyst formulations were tested, the 
highest productivity being achieved with the 0.1 mol% Pt/P25 photocatalyst, reaching ca. 15 mol/h kgcat 
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productivity of H2, which is an excellent result compared with the literature values, which are typically < 2 
mol/h kgcat (Montini et al., 2016).  Glucose conversion and hydrogen productivity also depended on the design 
of the photoreactor. Higher productivity was achieved with coaxial immersion lamps, in particular by reducing 
the optical path through the reacting suspension. However, interesting productivity, yet lower, has been 
observed with a top irradiated photoreactor, which exhibited the highest efficiency in the utilisation of the lamp 
power. This suggests further modifications of the design in this configuration, which is easily amenable to be 
applied with natural irradiation, by enlarging the exposed surface. 
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