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Dissolved oxygen concentration (DOC) is one of the most important technological parameters of fermentation 
processes influencing the physiological state of microorganisms’ cultures, production of desired products and 
reproducibility of desired processes. However, automatic set-point control of DOC in batch and fed-batch 
fermentation processes is not a trivial control task, as the resulting dynamic parameters (gain coefficient, time 
constant and time delay) of the control channel “agitation speed – DOC” vary over a wide range, and the 
ordinary PI or PID controllers with fixed tuning parameters are insufficient for accurate control of DOC during 
the entire control course. In this text, two control approaches have been proposed for coping with the 
problems of nonlinear and non-stationary dynamics of the DOC control process. 

1. Introduction 
Some of the developed DOC adaptive control systems are based on process models (Levisauskas et al., 
2016; Levisauskas, 1995). Practical realization of the above systems requires knowledge and time expenses 
to develop the process model (Dong et al., 2017) and model-based adaptation algorithm. Therefore, these 
systems are not yet attractive for existing industrial installations in daily control engineering practice, unless 
the process model is known beforehand in the case of industrial applications with limited substrate feeding 
solutions (Urniezius et al., 2018) or predicted dynamic model of microbial concentration is based on the neural 
network (Grossi et al., 2018). There are DOC control systems presented (Kuprijanov et al., 2009), in which 
simple gain scheduling algorithms are applied for PID (PI) controller’s adaptation. In the above systems, the 
oxygen uptake rate (OUR) is estimated on-line and applied as a gain scheduling parameter. Realization of 
these control systems requires that the bioreactor system is equipped with a gas analyzer or OUR online 
estimation by a soft sensor using bioreactor’s mass transfer coefficient (kLa) parameters. In Hwang et al. 
(1991), a DOC control system is presented, in which the PID controller adaptation is based on the on-line 
processing of the control action and the DOC feedback signals. Statistical parameters of the control system 
signals (the DOC error covariance, the average value of the error and the control variable covariance) for 
controller parameters adaptation are estimated from moving windows and applied in a heuristic rule. From the 
practical realization point of view, this control system seems to be attractive, as it does not require any 
additional measurements and is based on the analysis of internal signals in the closed loop only. 
In this paper, the authors have investigated performance of two simple DOC adaptive control systems, 
practical realization of which does not require additional hardware and software as compared with the ordinary 
control systems realized in commercial controllers. 

2. Mathematical model for simulation of the DOC dynamics 
In the simulation experiments, the controlled process was simulated by using the following state model 
(Levisauskas et al., 2016): ௗொೌ೔ೝௗ௧ = ଵ்ೂ ൫ܳ௔௜௥_௦௘௧ − ܳ௔௜௥൯,  

ௗேௗ௧ = ଵ்ಿ ( ௦ܰ௘௧ − ܰ) (1) 
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݀ܿௗ௢݀ݐ = −ܱܷܴఔ ܿௗ௢ܭ௖ + ܿௗ௢ + ఉܳ௔௜௥ఊܰߙ ቀݕைଶܪ − ܿௗ௢ቁ (2) 

dyைଶ݀ݐ = ܳ௔௜௥ܸ ൬1ߝ − 1൰ (0.21 − (ைଶݕ − ఉܳ௔௜௥ఊܰߙ ൬1ߝ − 1൰ ቀݕைଶܪ − ܿௗ௢ቁ  mmol (3)ݒ

ௗ௔೐೗ௗ௧ = ଵ்el1 ቀ100 ு௖೏೚଴.ଶଵ − ܽ௘௟ቁ,  
ௗ௖೐೗ௗ௧ = ଵ்el2 (ܽ௘௟ − ܿ௘௟) (4) 

where ܳ௔௜௥ is air supply rate, L s-1; ܳ௔௜௥_௦௘௧ is set value of air supply rate, L s-1; ܰ is stirring speed, s-1; ௦ܰ௘௧ is 
set value of stirring speed (control variable), s-1; yைଶ is fraction of oxygen in exhaust gas, -; OURV is volumetric 
oxygen uptake rate unlimited by DOC, mmol L-1 s-1; ܿௗ௢ is DOC in absolute units, mmol L-1; ܽ௘௟ is auxiliary 
variable, %; ܿ௘௟ is signal from DO electrode, %; H is Henry‘s constant, L mmol-1; vmmol is volume of 1 mmol of 
gas, L mmol-1; ொܶ, ேܶ, eܶl1, eܶl2 are time constants of air supply system, motor-stirrer system, and DO 

electrode, respectively, s; ߝ is gas holdup in the gas-liquid dispersion, -. 
The model equations (1) represent dynamics of air supply and stirring systems, respectively, equations (2), (3) 
stand for mass balances on oxygen in liquid and gaseous phases, respectively, and equations (4) represent 
second-order dynamics of DO electrode. Parameters of the model equations are taken within the ranges 
reported by Villadsen et al. (2011). Development of the above model is detailed in (Levisauskas et al., 2016).  
Values of the model parameters are given in Table 1. 

Table 1: Values of the model (1)-(4) parameters and the state variable initial conditions. 

H=0.7906 L mmol-1  TN=1 s ݕ 0.2=ߛைଶ(0)=0.2099 
Kc=0.00265 mmol L-1  V=45 L vmmol=0.0224 L mmol-1 ܽ௘௟(0)=10 % 

eܶl1 =10 s   0.0015=ߙ ܳ௔௜௥ (0)=2.0 L s-1 ܿ௘௟(0)=10 %  

eܶl2=2 s 0.1=(0) ܰ 2.0=ߚ ߚ s-1  
TQ=1 s  ε =0.15 ܿௗ௢(0)=0.0266 mmol L-1  

 
As the real measurements of DOC are corrupted by noise, the measurements in the simulation studies of the 
control system were simulated by adding white Gaussian noise: ܿ௘௟_௠(݇) = ܿ௘௟(݇) + ߪ · ܴܽ݊݀݊ (5) 

where  ܿ௘௟_௠  is measured value of DOC; ߪ is standard deviation estimated from real measurements (ߪ= 
0.1 %),  ܴܽ݊݀݊  is a number from Gaussian random numbers sequence with zero mean and unit variance; ݇ 
denotes an index of discrete measurement point. 
In the simulation experiments, time profile of the oxygen uptake rate (ܱܷܴ, mmol s-1; ܱܷܴ௩ = ܱܷܴ/ܸ) 
variation, presented in Figure 2a, is chosen to simulate close to realistic operating conditions in batch 
cultivation process. Time discretization step of the adaptation and the control algorithms was set ∆ݐ =  .ݏ 0.2

3. DOC control system, in which adaptation of PI controller parameters is based on the 
feedback signal analysis 
In the controller adaptation algorithm, two statistical parameters of feedback signal calculated on-line from 
moving window are used: 

1) average absolute deviation  ܦ௔௕௦_௔௩௘(݇) = ଵ௡ ∑ |ܿ௘௟(݅) − ܿ௔௩௘(݇)|௞ିଵ௜ୀ௞ି௡ , ܿ௔௩௘(݇) = ଵ௡ ∑ ܿ௘௟(݅)௞ିଵ௜ୀ௞ି௡  (6) 

2) average value of the error ௙ܱ௙_௦௘௧(݇) = ܿ௦௘௧ − ܿ௘௟ೌೡ೐(݇) (7) 

The above statistical parameters are applied for on-line tuning of the controller gain using the following 
heuristic rule: 
(݇)௔௕௦ೌೡ೐ܦ ܨܫ  > (݇)ܭ  ܰܧܪܶ  ௠௔௫ܦ  = ݇)ܭ − 1) − ߙ · (݇)௔௕௦_௔௩௘ܦ) − (݇)௙ܱ௙_௦௘௧ ܨܫ (௠௔௫ܦ >   ௙ܱ௙_௦௘௧_௠௔௫  ܶܭ  ܰܧܪ(݇) = ݇)ܭ − 1) + ߙ · ൫ ௙ܱ௙ೞ೐೟(݇) − ௙ܱ௙_௦௘௧_௠௔௫൯ ܭ  ܧܵܮܧ(݇) = ݇)ܭ − 1) 

(8) 

where  ܭ is controller gain coefficient,  ܦ௠௔௫  is threshold value of the average absolute deviation, ௙ܱ௙_௦௘௧_௠௔௫  
is threshold value of the average value of error, ܽ is a tuning parameter. Integration constant Ti  of the PI 
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controller was not changed during the controlled process. Block-diagram of the DOC control system is 
presented in Figure 1. 

 

Figure 1: Block-diagram of the DOC control system 

There are multiple possible technological or specific growth control related reasons on why DOC set-point has 
to be changed. Controlled oxygen limitation is one of the example scenarios. It should be stressed that 
changing of the DOC set-point during the controlled process distorts the data in moving window and, 
therefore, the statistical parameter estimates, on which the controller adaptation is based. So, the adaptive 
control system based on feedback signal statistical parameters is preferable to control the DOC at constant 
set-point only. 
The applied controller gain adaptation strategy is to keep the two performance indices: average absolute 
deviation and the off-set under desired levels. However, manipulation of the controller gain may act the above 
performance indices in opposite directions. It can be noticed that at high OUR changing rates the off-set of 
DOC from a set-point emerges. At the above state of the controlled process, the adaptation rule increases the 
controller gain to eliminate the off-set, however, the higher gain simultaneously increases instability, i.e., an 
amplitude of the oscillations. Therefore, choice of the threshold values of the above indices in the adaptation 
rule influences a tendency of the controller gain adaptation during fed-batch cultivation course. A suitable 
width of moving window and value of the coefficient ܽ in the tuning rule (8) was determined from early 
simulation experiments. In the simulation experiments, performance of the adaptive control system was 
investigated at various threshold levels of the maximum absolute deviation and the maximum off-set. Values 
of the tuning parameters are given in Table 2. 

Table 2: Values of the control system tuning parameters 

Parameter  Value 
Integration constant of PI controller Ti 50 s 
Length of moving window  ܶ200 ݓ s 
Maximum average absolute deviation  ܦ௠௔௫ 0.15 % 
Maximum average off-set  ௙ܱ௙_௦௘௧_௠௔௫ 0.02 % ܽ 1.5 

 
The simulation experiments show that the investigated DOC control system with the proper values of the 
tuning parameters provides reliable adaptation of controller gain and stable performance. It was found that 
performance of the control system is not very sensitive to variations of the control system tuning parameters in 
wide ranges around the most suitable values (up to 15-20 %). 
Simulation results of the control system performance are shown in Figure 2. For comparison, performance of 
the ordinary control system with constant gain (ܭ = 0.3 s-1 %-1) of PI controller is presented in Figure 2d. 
As mentioned above, the proposed adaptive control system based on the feedback signal statistical 
parameters is preferable, when the DOC is controlled at a steady set-point. The process disturbances are to 
be relatively small and do not distort significantly the statistical parameters used in the controller adaptation 
algorithm. Such assumptions are reasonable for the low and medium density cell cultivation processes.  
However, in high cell density cultivation processes (typically when the biomass concentration of 50 g L-1 or 
higher is reached), extremely large disturbances of the DOC may occur. Typically, the disturbances take place 
at time points when anti-foam solution is added to cultivation medium to avoid intensive foaming, which 
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deteriorates important instrumentation of bioreactor and spoils the cultivation process. Therefore, the foam 
reduction procedures are commonly used in high density cell cultivation processes.  

 

 

Figure 2: Adaptive control system output: (a) time profile of OUR, (b) adaptation of controller gain. (c) the DOC 
controlled at 10 % set-point, (d) ordinary PI control 

4. DOC control system, in which adaptation of PI controller parameters is based on the 
controlled variable disturbances in closed-loop system 
For processes with significant disturbances, other methods of controller adaptation shall be used. These 
methods generally employ transient responses of control system for on-line tuning of controller parameters 
(Åström and Hägglund, 2006). Analysis of the existing methods has shown that the adaptation method 
proposed by Rotach (1973) is well suited for the DOC controller adaptation in the high density cell cultivation 
processes. The method includes analysis of transient responses of the closed-loop control system and 
application of approximate tuning rules for adaptation of controller gain K and integration constant Ti  in order 
to achieve rational decay ratio 0.1<d<0.25  (ratio between two consecutive peaks of the DOC signal after 
disturbance)  and settling time Ts  (the time before the disturbance response remains within 10 % of its steady-
state value) of the controlled process. The above adaptation method was originally developed for controller 
adaptation based on analysis of the control system set-point step response; however, our investigation has 
shown that it can be also reasonably applied for system disturbance-based controller adaptation. 
 
The PI controller adaptation algorithm realized in the above control system can be summarized as follows: 

1. After an anti-foam agent is added into bioreactor, the DOC control system reacts to this disturbance 
and the transient responses of the control system are used for estimation the damping ܦ = 1 − ଶܣ ⁄ଵܣ  and the oscillation period T of the response curve (see Figure 3b). 

2. Based on the above parameter values, an auxiliary parameter T/Ti is estimated and correction 
coefficients for the controller gain αk and the integration constant αi are defined from the diagrams 
developed by Rotach (1973). 

3. Improved values of the controller gain  K and the integration constant Ti for the next time interval k+1  
are estimated using the following iterative equations: 
 

K (k+1)=αk  · K(k);  Ti(k+1)=αi · Ti(k) (9) 

Block-diagram of the adaptive control system is presented in Figure 3a.  

(a) 

(c) (d) 

(b) 
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Figure 3: Block-diagram of the DOC adaptive control system based on the transient response of closed loop 
system (a), schema of the procedure for estimation of peak magnitudes A1 and A2 for damping D and 
oscillation period T (b) 

An efficiency of the above controller adaptation method is investigated when controlling the DOC in high 
density cell cultivation process. In the simulation experiments, the process model (1)-(4) was used. The 
performance of proposed adaptive DOC control system is presented in Figure 4a,b. 

 

Figure 4: Simulation results of the adaptive PI control system performance (a) controlled process and 
controller’s gain adaptation (b) output 

The following assumptions were made for simulation of the DOC dynamics and transient responses of the 
high density cell cultivation process: 

• OUR in the high density cultivation process is 3 times higher as compared with an ordinary cultivation 
process, OURHD (t)= 3·OUR(t); 

• Starting from the time point t=4000 s, every 2000 s an anti-foam agent is added into the bioreactor. 
This action extremely reduces the oxygen transfer capacity in bioreactor for 30 seconds (parameter α 
in the model equations (2),(3) is reduced to  0.3· α  for this time interval); 

• Transient responses of the control system are used to estimate the parameter D, the oscillation 
period T, the auxiliary parameter T/Ti  and the correction coefficients αk , αi . The controller parameter 
values of the conventional control system (K=0.3 s-1 %-1, Ti=50 s) are chosen to provide the best 
available performance using the ordinary PI controller with constant parameter values. 
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Analysis of the simulation results of cultivation process at significant disturbances shows that in the late 
phases of cultivation process the adaptive controller decreases the decay ratio d from 45 % (in the 
conventional system) to 15 % (in the adaptive system). Also, the settling time Ts in these cultivation phases is 
reduced from 200 seconds (in conventional system) to 160 seconds (in adaptive system). The presented 
results prove efficiency of the DOC adaptive control system and potential of implementation for the DOC 
control in high density cell cultivation processes. Interestingly, from the simulation results, one can see that the 
adaptation curve of controller gain K has a profile Figure 4b like that of the adaptive controller gain obtained in 
the control system discussed in the previous section of the paper Figure 2b. However, as it was mentioned 
above, the 1st adaptation method is not suitable for the high density cell cultivation process because of 
extreme disturbances in the DOC control loop. 

5. Conclusions 
The two simple adaptive PI control systems have been developed and investigated for controlling the DOC in 
batch and fed-batch fermentation processes. The both control systems demonstrate stable performance and 
improvement of the DOC control accuracy as compared with the ordinary PI control system. 
The adaptive control system based on feedback signal statistical analysis requires minimum a priori 
knowledge about the controlled process and can be realized in many commercial controllers. It can be applied 
for controlling DOC at steady set-point in standard batch and fed-batch fermentation processes under ordinary 
conditions.  
The adaptive control system based on disturbance analysis in closed-loop system can be applied for 
controlling DOC in high density cell cultivation processes, in which significant disturbances of the DOC occur 
due to periodic addition of the anti-foam agents. 
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