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The performance of Tubular Carbon Membrane (TCMs) due to pyrolysis conditions was studied. Dip-coating 

technique was used to synthesize the P84 co-polyimide/Nanocrystalline cellulose-based TCM, and pure gas O2 

and N2 were used to determine the permeation properties of the TCMs. Different atmosphere i.e Argon, Nitrogen 

and Helium were introduced during the heat treatment processes at a flow rate of 200 mL/min to enhance the 

membrane’s performance. The pyrolysis temperature and heating rate were set at 800 °C and 3°C/min. It was 

found that the best pyrolysis condition for the preparation of PI/NCC-based TCMs was conducted in Argon 

atmosphere with the permeance of 3.22 ± 3.21 and 29.90 ± 2.98 GPU for N2, and O2 gas. The membrane also 

demonstrated that the highest O2/N2 selectivity of 9.29 ± 2.54. In comparisons to all other carbonization 

atmosphere, preparation of TCMs in Ar atmosphere showed the lowest weight loss and revealed the highest N2 

selectivity in this study. 

1. Introduction

In membrane fabrication, polymers are known as the predominant materials utilized because of the simplicity in 

processing with sufficient permselectivity capability for some set of gases. Transport properties of polymer 

membranes can be custom fitted by presenting pressing repressing massive gatherings and naturally unbending 

linkages in the polymer spines (Yang et al., 2017). An “upper bound” threshold restricts the separation 

performance of the unmodified polymeric material. One or the other must be sacrificed in order to surpass this 

limit barrier. As the development of membranes progressing, early findings reported of carbon membranes 

having capabilities to perform well beyond this upper bound limit. Carbon membranes are made via 

carbonization of polymers. And in this paper, the impact of pyrolysis condition is explored to control and 

enhanced the separation performance of carbon membranes.  

Apart from polymeric membranes, inorganic-based membranes have now received a great interest among 

researchers because of their outstanding gas separation capabilities. Fabricated via the pyrolysis of polymer 

precursors, carbon membranes are perceived to have potential to be on par with inorganic membranes, 

particularly for gas separation application. They are known to have an excellent capability to purify and separate 

O2/N2, CO2/CH4, and hydrocarbons gas blends (Kiyono et al., 2010). Polymers such as phenolic resin (Abd Jalil 

et al., 2017), polyimide (Sazali et al., 2018), poly(vinylidene chloride) (Garnier et al., 2012), poly(furfuryl) alcohol 

(Hu et al., 2015) and polyetherimide (Hamm et al., 2017) are often being used to prepare a carbon membrane 

by various techniques including plunge coating, turn coating, shower coating or stage reversal. The focus of this 

study is to introduce a carbon membrane (the ‘next generation’ of membrane materials) derived from polymer 

blends of nanocrystalline cellulose (NCC) and BTDA-TDI/MDI polyimide. The NCC was synthesized and used 

as an additive to tune the overall characteristics of the final carbon membranes. The gas permeation data 

 

   

DOI: 10.3303/CET1972069 

 
 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

 

 
 
 
 

Paper Received: 30  March  2018; Revised: 20  September  2018; Accepted: 08  October  2018 

Please cite this article as: Sazali N., Wan Salleh W.N., Ismail A.F., Mahyon N.I., Kadirgama K., Moslan M.S., 2019, Tubular carbon membrane 
prepared from pi/ncc: effects of pyrolysis atmosphere, Chemical Engineering Transactions, 72, 409-414  DOI:10.3303/CET1972069   

409



demonstrated that polyimide/NCC-based carbon membrane can be considered as a new candidate for O2 

separation. 

Carbon membranes provide the advantage in term of operation atmosphere such as in the presence of organic 

vapor or solvent and non-oxidizing acids or bases environments which is prohibitive to polymeric membrane. 

Furthermore, it is more resistant towards radiation, chemicals and microbiological attack. Carbon membrane 

can be used for a prolonged period under an environment that contains low levels of oxidants in air. This is to 

make sure that this type of membranes possessed longer life time compared to polymeric membranes. The 

membranes become more attractive as its pores characteristic can be controlled based on the preferable 

separation applications. In fabrication of carbon membrane, the same material can be used to develop carbon 

membrane with different permeation properties for different gas mixtures (Centeno et al., 2004). This is 

completed by conducting simple thermos-chemical treatment to meet different separation requirements and 

objectives. Due to those features, it attracts more researches in carbon membrane in order to tailor its separation 

performance in different applications. 

Pyrolysis conditions become among the factors that influence the performance of carbon membranes (Ismail et 

al., 2018a). Different atmospheres i.e. vacuum, inert atmosphere (helium, nitrogen, or argon) and oxidative air 

(O2/N2 or CO2) had been employed for fabrication of carbon membranes (Ismail et al., 2018b). Vu et al. (2002) 

have successfully arranged empty fibers of CMSMs from 6FDA/BPDA-DAM and Matrimid® 5218 polyimide, 

intended for excellent CO2/CH4 separation (Vu et al., 2002). The pyrolysis of Matrimid® polyimide at 823 K 

under helium rather than vacuum resulted in multiple CO2 permeance which has also cost the loss of CO2/CH4 

selectivity around 65 %. On the other hand, Hayashi and colleagues have fabricated BPDA-pp'ODA polyimide 

carbon membranes, layered on top of an alumina support (Hayashi et al., 1997). The membranes carbonized 

at 973 K under nitrogen gas had micropore volumes of 0.25, 0.30, 0.19 and 0.14 cm3/g while those carbonized 

at the same temperature using argon gas possessed micropore volumes of 0.36, 0.30, 0.19 and 0.14 cm3/g, 

applying CO2, C2H6, n-C4H10, and I-C4H10 adsorbates, separately. In a study by Geiszler and Koros (1996), it 

was noticed that the carbon membrane arranged under vacuum air exhibited better H2/N2 and O2/N2 selectivity 

compared to the membrane arranged in the still atmosphere at a similar temperature. The faster heating rate 

and quicker mass exchange as the results of using inactive gas prior to pyrolysis procedure were believed to 

induce the formation of more porous membrane with less defined structure. The pervade motion across the 

carbon membranes carbonized at the temperature of 823 K, exposed under helium, argon or CO2 was reduced 

after the rate of the cleanse gas stream was expanded from 20 to 200 cm3/min. This phenomenon however did 

not influence the selectivity of the membrane (Salleh and Ismail, 2011). 

According to previous investigations, carbon membrane carbonized at 550 °C displayed Knudsen dispersion 

mechanism, while carbon membrane carbonized at 650 °C showed sub-atomic sieving mechanism (Briceño et 

al., 2012b). This mechanic component difference proved that the final pyrolysis temperature can influence the 

formation of pores (meso and micropores) in carbon membrane preparation (Briceño et al., 2012a). In other 

study, Fu et al. (2016) have shaped 6FDA/DETDA:DABA (3:2) CMS thick layer from the pyrolysis of precursor 

membranes under UHP Argon at three pyrolysis temperatures: 550 °C, 675 °C, and 800 °C. Based on the study, 

the fabricated membranes showed a substantial increment of two-gas permselectivity and porosity compared 

to those of the precursor membranes and outclassed the polymeric upper bound. As the pyrolysis temperature 

increased, the membrane porosity decreased drastically with expended permselectivity performance. Centeno 

and collaborators prepared carbon membranes, in which phenolic pitch became the main polymer, supported 

by a porous ceramic tube (Centeno et al., 2004). The covered phenolic pitch membranes were carbonized in 

both nitrogen gas and vacuum environments at 973 K, heated at the rate of 1 K/min for 60 min. Fundamentally, 

exposure towards nitrogen gas during pyrolysis would enhance the porosity of membrane. It turned out that 

membranes carbonized in nitrogen gas condition produced greater hydrocarbon/N2 selectivity. Besides, 

permeation rates of nitrogen gas and hydrocarbon gas increased up to five times the membranes carbonized 

under vacuum condition. These series of investigations have set a clear goal to investigate the effect of the 

pyrolysis atmosphere towards the structural morphology and gas separation performance of carbon membrane. 

2. Experimental

2.1 Materials 

Principal precursor used in this study was the P84 co-polyamide which obtained from Sigma Aldrich. The P84 

co-polyimide type polyimide is a thermally stable co-polyimide of 3,3'4,4'-benzophenone tetracarboxylic 

dianhydride with 80 % methylphenylene-diamine and 20 % methylene diamine.  N-methyl-2-pyrrolidone (NMP) 

was used as the solvent was purchased from Merck (Germany). NMP possessed a high chemical and thermal 

stability and is completely miscible with water at all temperatures. Besides that, it is also miscible with most 

common solvents such as ketone, ethyl acetate, benzene, and chloroform. All chemicals were used directly 

without further purification. Nanocrystalline cellulose (NCC) was produced in-house, in accordance to the 
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techniques reported in preceding conducted by (Sazali et al., 2018).  A Porous tubular ceramic support (TiO2) 

(length - 8cm, thickness – 3 mm, average pore size – 0.2 m, porosity – 40-50 %) was obtained from Shanghai 

Gongtao Ceramics Co., Ltd as tabulated in Figure 1. All the tubular alumina ceramic supported were polished 

utilizing SiC paper and cleaned with distilled water in a sonication bath for 30 min and then dried in air to remove 

any dust and unnecessary particles that can influence the final results.   

Figure 1: Porous tubular ceramic support measurements (a) length; (b)thickness. 

2.2 Fabrication of carbon tubular membrane 

15 wt% of P-84 was dissolved in NMP.Stirring temperature was maintained below the NMP boiling point to avoid 

the solvent from vaporize. The dope comprised of P84 co-polyimide and NMP was heated at 80 ºC and stirred 

for 24 h. Then 7 wt% of NCC were added in stages into the polymer dope and continuously stirred until 

homogeneous solution was formed. The dope solution was degassed in ultrasonic bath for bubbles removal. 

The solutions were used to dip-coated the hollow tube support by immersing the tube in the solution for 45 min. 

Dip-coated technique was chosen as a preferable method for supported carbon membrane fabrication as this 

technique could produce a carbon membrane with a thin layer on the top. Following the immersion was the total 

removal solvent step where the samples were immersed in methanol solution for 2 h followed by an overnight 

drying in the oven at 100 °C. To produce the TCMs, the tubular coated membrane samples were introduced 

into three different carbonization atmospheres (helium, argon and nitrogen) at a gas flow rate of 200 mL/min. 

Samples were heated in Carbolite horizontal tubular furnace up to 800 °C at a heating rate of 3 °C /min. The 

same methods were applied according to our earlier studies (Sazali et al., 2018). The same technique was used 

to characterize the flat sheet unsupported carbon membranes. Eurotherm 2,500 °C temperature control systems 

was used to regulate the heating cycle. 

2.3 Pure gas permeation measurements 

Two parameters were explored for membrane performance measurements: permeance and selectivity. The 

carbon tubular membranes were tested by utilizing an in-house gas permeation rig setup (Sazali et al., 2015). 

The rig comprised of flexible hose, separation cell, valve, weight controller and bubble flow meter as shown in 

Figure 2a. The 8 cm carbon tubular membrane was assembled inside a tubular stainless-steel module of 14 cm 

long as pictured in Figure 2b. The membrane was fitted with elastic O-rings to enable the membrane to be 

housed in the module without any leakage. Pure O2 (0.346 nm), and N2 (0.364 nm) gases were introduced into 

the system during the experiments at a trans-membrane pressure of 8 bars. 

Figure 2: (a)Gas permeation apparatus; (b) Tubular membrane module. 

(b)(a)
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The selectivity, α, and permeance, P/l (GPU, of the membranes) were calculated with the accompanying 

conditions: 

Permeance, (P/l)i : 

(𝑃/𝑙)𝑖 =
𝑄𝑖

𝛢.𝛥𝑝
=

𝑄𝑖

𝜋𝐷𝑙𝛥𝑝
 (1) 

1 GPU=1×10−6 cm3 (STP) cm−2 s−1 cmHg−1. 

where P/l is the permeance of the membrane (GPU), Qi is the volumetric flow rate of gas i at standard 

temperature and pressure (cm3 (STP/s), p is the pressure difference between the feed side and the permeation 

side of the membrane (cmHg), A is the membrane surface area (cm2), D an outer diameter of the membrane 

(cm) and l is the effective length of the membrane (cm).  

Selectivity, α : 

𝛼𝑖/𝑗 =
(𝑃/𝑙)𝑖

(𝑃/𝑙)𝑗
(2) 

Volumetric flow rate of the permeate was measured by the soap bubble flow meter reading of 1.0 mL. Different 

membrane samples were used to repeat the permeation test. The gas permeation test was conducted at 

ambient temperatures with similar setup as used in previous studies (Sazali et al., 2015). 

3. Results and discussion

In this examination, the impact of pyrolysis climate was analyzed by looking at the differences in the arrangement 

of carbon membranes under an inactive condition at a warming rate of 3 °C /min up to 800 °C. Based on the 

gas permeation study, it was discovered that the expansion of NCC to the basic polymer as an added substance 

created better gas permeation properties when contrasted with unmodified PI. Table 1 shows gas permeation 

properties of PI/NCC polymeric membrane. The present finding shows that PI/NCC polymeric membrane has 

the best gas permeance and selectivity. The gas permeance of the chosen gases were in the sequence of 

O2>N2 for every membrane what was tasted. 

Table 1: Gas permeation performance of PI/NCC polymeric membrane 

Sample Permeance (GPU) Selectivity 

O2 N2 O2/N2 

PI 0.77±3.22 0.77±3.22 1.10±5.12 

PI/NCC 0.77±3.22 0.94±3.54 1.41±1.92 

As reported in Table 2, the pure PI and PI/NCC carbon membrane under Ar gas condition demonstrated the 

selectivity of 9.29 ± 2.54 for O2/N2 separations, which is the highest among others. As discussed in the published 

works before, the existence of pore former materials could offer different pores growth during the development 

of the permeable structure. This phenomenon was ascribed to the presence of additives, would alter and bring 

down the pyrolysis temperature. Therefore, manipulating the pyrolysis condition could potentially enhance the 

pore distribution, pore volume and creating a unique diffusional pathway in the membrane wall (De Almeida 

Filho and Zarbin, 2006). 

Table 2: Gas permeation performance of PI and PI/NCC carbon membrane under different pyrolysis 

atmosphere 

Sample PI carbon membrane PI/NCC carbon membrane 

Permeance (GPU) Selectivity Permeance (GPU) Selectivity 

N2 O2 O2/N2 N2 O2 O2/N2 

CM-Ar 2.78 ±1.28 20.24 ±4.51 7.28 ±3.82 3.22 ±3.21 29.90 ±2.98 9.29 ±2.54 

CM-He 3.21 ±2.39 22.77 ±3.14 7.09 ±1.77 3.84 ±4.85 32.61 ±1.00 8.49 ±1.92 

CM-N2 2.69 ±1.22 17.88 ±1.65 6.64 ±1.81 3.14 ±3.42 24.29 ±2.91 7.74 ±3.39 

As compared to carbon membranes formed from pyrolysis under N2 and He, the one made with Ar were found 

to have better partition properties. The porosity of carbon membrane under Ar was evidently enhanced as well 

as the pure gas permeation rates. The presence of the carbon membrane in the membrane caused the carbon-

based membrane to have a superior performance than the polymeric membrane. It could be caused by the 
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restriction of the passageway in the polymeric membranes due to the small channels. As it is known that the 

separation properties are controlled by the atomic sieving effects, the transport flow is limited by the physical 

characteristics of the ultra-micropores. With an increase in the pyrolysis temperature, the gas permeation 

profiles show a variation of the gas permeance results. Thus, the effects of changing the pyrolysis atmosphere 

were more significant at a higher temperature. Membranes carbonized under helium gas at 800 °C represented 

the top separation performance as compared to the one carbonized under Ar and N2 at a similar temperature 

most likely due to the porous pores, and it contained more permeable membranes. Additional reason for this   

performance might be because of a few pores inside He gases are dead and, in this way, not amiable for the 

gas to penetrate through. 

In spite of the higher temperatures, the pyrolysis under Ar condition created more beneficial pores than with N2 

and He gas. Membranes which were carbonized under the pyrolysis temperature of 800 °C show considerable 

increment in their selectivity as compared to the polymeric membranes. At this high temperature, the 

membranes had contracted to show diminished surface territory and aggregated pores volume of the resultant 

membrane. A few pores have contracted to such a degree, to the point that there are not any more specific to 

the gas atoms. The membranes acquired from various pyrolysis condition deliver indistinguishable gas 

permeances for all gases except He. He conditioned pyrolysis membranes presents a better permeation 

performance might be due to a lesser degree of pore shrinkage. While for both Ar and N2 conditions, the pore 

structure refinement resulted in smaller pathways which reduces the permeation value for the membranes. 

Interestingly, all carbon membranes showed higher selectivity values for O2/N2 than those for polymeric 

membranes. This was due to the membrane shrinking phenomenon at higher temperature, bringing about 

smaller pores and subsequently, an enhanced selectivity (Kim et al., 2018). View from this study shows that 

pyrolysis under inert gases is suitable for the arrangement of consistent dispersed tight pores due to the merging 

of pores under high-temperature heat treatment. The selectivity however depends on the sub-atomic size 

differences between the gases. But since the distinction sizes between O2 (2.80 Å) and N2 (3.64 Å) is small, it 

would not cause much impacts. The membranes carbonized under Ar condition create the best selectivity of 

9.29 ± 2.54 for O2/N2 with a permeance of 3.22 ± 3.21 and 29.90 ± 2.98 GPU for N2, and O2 gases.  

4. Conclusions

This work focused on the fabrication of polyimide-based tubular supported carbon membrane, by two stages of 

the pyrolysis cycle. The different pyrolysis conditions chosen were investigated to enhance the gas penetrability 

and permselectivity for O2/N2 separation. It was found that gas permeation increases with the addition of 

temperature during the carbonization process. The carbon membrane arranged at 800 °C under Ar gas stream 

exhibited great pure gas separation for CO2/N2, with the best selectivity of 29.90±2.98 GPU for O2 and 

3.22±3.21 GPU for N2. From all conditions tested, carbon membrane prepared under Argon atmosphere 

showed the least weight loss with the highest O2/N2 selectivity. In sequence, He induced carbonization 

atmosphere performed lower than in Ar conditioned for their selectivity which is believe to be caused by the 

increase in weight loss. The least favourable performance was for membranes made under N2 pyrolysis 

condition. 
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