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An investigation is carried out to study the effects of suction/injection on the slip flow of oscillatory visco-elastic 
hydromagnetic flow through a vertical porous channel. It is considered that the fluid has small electrical 
conductivity and the electro-magnetic force produced is also very small. The flow is subjected to suction at the 
cold wall and injection at the heated wall. Under the Boussinesq’s approximation, the governing equations are 
solved using multiparameter perturbation technique. The effects of pertinent flow parameters on fluid velocity, 
temperature, shearing stress, the rate of heat transfer is obtained and illustrated graphically. This study plays 
an important role in physiological, industrial and hydrological problems under suitable conditions. 

1. Introduction 

Unsteady oscillatory flow of electrically conducting fluid has grabbed the attention of many researchers due to 
its admirable eruption in chemical engineering, turbomachinery and in aerospace technology etc. (Mishra et 
al., 2016) have investigated the MHD oscillatory channel flow with porous medium in presence of chemical 
reaction. (Makinde et al., 2005) have studied the heat transfer to MHD oscillatory flow in a channel filled with 
porous medium. (Adesanya et al., 2014) have investigated the effect of slip on the free reactors. Also, (Hamza 
et al., 2011) have investigated the unsteady heat transfer and effects of slip condition of a conducting optically 
thin fluid through a channel filled with porous medium. (Palani et al., 2009) have studied the combined effects 
of MHD and radiation effects on free connection flow past an impulsive isothermal vertical plate using 
Rosseland approximation. Also, (Kumari et al., 2017) have investigated the viscous dissipation and mass 
transfer effects on MHD oscillatory flow in a vertical channel with porous medium. In the above studies, the 
channel walls are assumed to be impervious. Again, for other suction/injection-controlled applications, several 
authors have investigated the connective heat transfer through porous channel. (Umavathi et al., 2009; Tang 
et al., 2009; Khramtsov et al., 2016) have contributions in this domain. The modelling in visco-elastic fluid has 
been studied extensively in many fluid flow problems. A good number of researchers viz. (Choudhury et al., 
2012; Falade et al., 2017; Singh et al., 2014; Karunakar et al., 2013; Raptis et al., 1981; Choudhury et al., 
2016; Priya et al., 2014; Benazir et al., 2015; Jha et al., 2010) have shown their interest in this field for its 
applications in chemical and petroleum engineering, Hydrology, Geo-physics, Paper and Pulp technology etc. 

2. Mathematical Formulation  

The unsteady laminar visco-elastic flow of an incompressible electrically conducting fluid through a channel 
with slip at the cold plate has been investigated (Figure 1). An external magnetic field is placed normal to the 
channel. 
Under the usual Boussinesq approximation the equation governing the flow are as follows: 

Equation of continuity:  
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Equation of motion: 
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Equation of energy: 
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Figure 1: Flow configuration  

corresponding boundary conditions are: 
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where u' is the axial velocity, t' is the time? 
We introduce the following dimensionless parameters and variables  
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Where Gr denotes the Grashof number, Pr denotes Prandtl number, δ represents the thermal radiation, γ 
indicates Navier slip parameter, Ha designates magnetic parameter, Da signifies permeability, S symbolizes 
suction parameter. The equations (2) and (3), are transformed into 
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the modified boundary conditions are: 
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We assume an oscillatory pressure gradient, such that solutions of the dimensionless equations (6) and (7) 
under the boundary conditions (8) are in following forms: 
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                                                                                     (9) 
where λ is any positive constant, and ω is the frequency of oscillation?  
Introducing (9) into the equations (6) and (7) we get the transformed equations as follows: 
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subject to the boundary conditions: 
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3. Method of solution  

The solution of equation (11) subject to the boundary conditions (12) is 
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To solve (10), we use multiparameter perturbation scheme following Nowinski and Ismail (as k1<<1 for small 
rate of shear) as 

( )2
1011000 kOukuu ++=                                                                                                                          (14)  

Using (14) in (10) and equating the coefficients of like powers of k1 with the neglect of higher order terms, we 
get 
Zeroth -order equation: 
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First-order Equation: 
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the relevant boundary conditions are: 
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Solving (15) and (16) subject to the boundary conditions (17) we get 
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Using the above solutions, the expressions for velocity and temperature are obtained as follows: 
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4. Results and discussion 

In this study, the effects of visco-elasticity are examined using multiparameter perturbation technique. The 
software MATLAB is used for computational work. The real part of the solution is implied throughout the 
computation. Figures 1 to 7 depict the fluid velocity u against y for different pertinent flow parameters viz. 
magnetic parameter Ha, permeability parameter Da, suction parameter S, thermal Grashof number Gr, thermal 
radiation δ, Navier slip parameter γ. Figures 8 to 13 show the variation of shearing stress σ against different 
fluid flow parameters. The numerical calculation is carried out by considering S=1, Pr=3, δ=1, Ha=4, Da=1, γ=8, 
Gr=7, γ=0.1 unless otherwise stated. In all the cases, the fluid velocity reveals an accelerating trend for visco-
elastic fluid in comparison with simple Newtonian case but an opposite pattern is demonstrated in case of 
shearing stress against flow parameters. The velocity distribution u against y (figure 5.1) indicates that the flow 
velocity first enhances and then diminishes with the increase in y for both Newtonian (K1=0) and non-
Newtonian (K1=0.02, 0.04) cases for different flow parameters. Also, the fluid velocity enhances with the 
decrease of magnetic parameter Ha in both Newtonian and non-Newtonian fluids (figures 2 and 3). It is 
observed that maximum flow occurs when magnetic parameter is less and this is due to the generation of 
Lorentz force. Figures 2 and 4 show the effect of permeability parameter Da of the fluid velocity and we 
observe that with the increase in permeability parameter the fluid velocity shows slightly increasing trend and 
this is due to that of free flow of fluid with the increase of Da. Figures 2 and 5 reveal that due to the increase of 
suction/injection parameter S, the fluid velocity decreases in both Newtonian and visco-elastic fluids. With the 
enhanced value of Grashof number Gr the fluid velocity does not show a diminishing trend in fluid flow region 
(figures 2 and 6). The variation of fluid velocity for the enhancement of thermal radiation parameter δ is 
exhibited in figures 2 and 7. Figures 2 and 8 present the accelerating trend of fluid velocity for the growth of 
the slip parameter. The variation of shearing stress σ against magnetic parameter Ha, permeability parameter 
Da, pressure gradient λ, Grashof number Gr thermal radiation δ, Navier’s slip parameter γ are illustrated in 
figures 9 to 14. With the enhancement of Ha andγ, the shearing stress shows a decelerating trend in both 
Newtonian and visco-elastic fluid flows but and accelerating trend is observed with the variation of Da, λ, Gr 
and δ. 

     

Figure 2: Fluid velocity u against y 
for S=1, Pr=3, δ=1 Ha=4, γ=0.1, 
ω=π 

Figure 3: Fluid velocity u against y 
for S=1, Pr=3, δ=1, Da=1, λ=1, 
Gr=7, γ=0.1, ω=π 

Figure 4: Fluid velocity u 
against y for S=1, Pr=3, δ=1, 
Da=1, λ=1, Gr=7, γ=0.1, ω=π  

     

Figure 5: Fluid velocity u against y 
for S=2, Pr=3,δ=1 Ha=4, Ha=4, 
Da=2, λ=8, Gr=7, γ=0.1, ω=π 

Figure 6: Fluid velocity u against y 
for S=1, Pr=3,δ=1 Ha=4, Da=1, 
λ=1, Gr=7,γ=0.1, ω=π 

Figure 7: Fluid velocity u against y 
for S=1, Pr=3,δ=2, Ha=4, Da=1, 
λ=1, Gr=8,γ=0.1, ω=π 
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Figure 8: Fluid velocity u against y 
for S=1, Pr=3,δ=1, Ha=4, Da=1, 
λ=1, Gr=8, γ=0.4, ω=π 

Figure 9: Shearing Stress σ 
against Magnetic parameter Ha 

Figure 10: Shearing stress σ 
against Darcy parameter Da 

    

Figure 11: Shearing stress σ 
against pressure gradient λ 

Figure 12: Shearing stress 
against Grashof number Gr 

Figure 13: Shearing stress 
against thermal radiation δ 

 

 

Figure 14: Shearing stress against Navier’s slip parameter 

5. Conclusions 

From this study, some explicit conclusions are highlighted below: 
This analysis establishes a significant role of visco-elastic parameter on the fluid velocity in the entire fluid flow 
region. 
The fluid velocity is parabolic in nature in both Newtonian and visco-elastic fluids. 
Velocity slip parameter significantly influences the velocity of the flow within the considered region. 
The shearing stress diminishes with the increase of magnetic parameter and Navier’s slip parameter but 
shows a reverse trend with the increase of permeability parameter, pressure gradient, Grashof number and 
thermal radiation parameter 
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